

XXXII Cycle

Development of 3D structures for energy applications: CO₂ capture and permeability control Matteo Gillono Supervisor: Prof. Fabrizio Candido Pirri

Research context and motivation

- In recent decades atmospheric concentration of CO_2 has remarkably increased. This increase is due to natural and anthropogenic emissions, that include the iron and steel industry, gas flaring, and combustion of fossil fuels. A substantial reduction of the CO_2 emissions is required to slow down the global warming affecting our planet. Despite the urgency of the problem, in the last years, CO₂ emissions have not been decreased. The necessity for alternative or improved methods to reduce CO₂ emissions and to capture and store released CO₂ has stimulated intense research in academia and industry. Today the so-called absorbers are used in power plants for post-combustion CO_2 capture.
- **Polymeric solid absorbers** for CO₂ capture are in increasing interest, and many research have been made in this field, most of all related to membrane separation technology. Poly ionic liquids (**PILs**) have gained a lot of attention in CO₂ capture/release compared with other type of technologies and their liquid counterparts as well.

Novel contributions

- **3D printing** is carried out in order to create structures composed of new materials capable to adsorb carbon dioxide from air.
- Light responsive materials are studied to control the CO₂ permeability in polymer membranes:

Increase of free volume in polymer matrix

CONTROL

- stimuli-responsive materials are widely studied in polymeric membrane separation processes due to their ability to change specific properties by external stimuli.
- **3D printing** is a suitable technology for this purpose because it can produce complex objects directly from computer-aided design (CAD) and, skipping the slow and expensive lithography process of traditional manufacturing, it is a time-saving and cost-effective technique.
- Polymeric based smart filters could be created, containing CO₂-philic PILs or stimuli responsive molecules, exploiting 3D printing.

Addressed research questions/problems

permeability Light induced **3D** printing control and application

The CO_2 permeability of a membrane of PEGDA containing 0.2 phr of Methyl (**MR**) and Disperse Red Red Methacrylate (**DR1M**) increased of about 70% while irradiated with a LASER source. As a proof of concept and application, a 3D printed device was manufactured to photo-control the pH of a solution by monitoring the CO_2 flow.

b 70

functionalized with species able to interact physically and/or chemically with CO_2 .

Poly lonic liquids are used to create polymer matrices crosslinked with PEGDA

Adopted methodologies

3D printing (DLP) : the methodology consists in preparing a liquid formulation containing monomers, a photoinitiator to activate the photo-induced polymerization and functional species/fillers suitable for the final application. The DLP printer creates the 3D object by illuminating the resin layer by layer with a digital projector, while a support basement lifts the attached structure generating the structure. The main control parameters are the thickness of the irradiated layers and the time of exposure. The formulation contains also a dye necessary to confine the light inside the exposed layer with a concentration that allows a precise printability without over-exposures.

Printable Poly Ionic 3D ulletliquids(PIL) for CO₂ capture

Imidazolium PILs, based suitable for DLP 3D printing, synthesized modifying were their cations and anions to T 1,00E+06 increase CO₂ uptake. Selfstanding structures with high content of PIL were successfully 3D printed with a DLP system.

Submitted and published works

1,00E+07

,00E+05

1,00E+04

1,00E+03

1,00E+00

- Polymeric 3D Printed Functional Microcantilevers for Biosensing Applications Stefano Stassi, Erika Fantino, Roberta Calmo, Annalisa Chiappone, Matteo Gillono, Davide Scaiola, Candido Fabrizio Pirri, Carlo Ricciardi, Alessandro Chiadò, and Ignazio Roppolo. ACS Applied Materials & Interfaces 2017 9 (22), 19193-19201. DOI: 10.1021/acsami.7b04030
- In situ generation of silver nanoparticles in PVDF for the development of resistive switching devices Chiappone, A.; Gillono, M.; Castellino, M.; Bejtka, K.; Rajan, K.; Roppolo, I.; Perrone, D.; Bocchini, S.; Ricciardi, C.; Pirri, C. F.; Chiolerio, A Applied Surface Science, Volume 455, 15 October 2018, Pages 418-424. DOI 10.1016/j.apsusc.2018.06.001
- CO2 permeability control in 3D printed light responsive structures Gillono, Matteo; Roppolo, Ignazio; Frascella, Francesca; Scaltrito, Luciano; Pirri, Candido; Chiappone, Annalisa. Applied Materials Today 2019.

Future work

- CO₂ capture reactor for 3D structures in dynamic flow
- CO_2 adsorption by PIL coupled with light controlled CO_2 release
- Engineering of the filter to maximize the capture by introducing controlled porosity
- Possibility of 3D printing implementation related to CO_2 (i.e. supporting structures for

catalyzed CO₂ reduction)

List of attended classes

01MOUKI	Nanocomposite polymeric materials	4	21/04/2017
02LWHRV	Communication	1	16/02/2017
02RHPRV	Intellectual Property Rights, Technology Transfer and	6	23/03/2017
	Hi-tech Entrepreneurship (Theoretical course)		
01QORRV	Writing Scientific Papers in English	3	23/03/2017
01MOVKI	Polymers and radiations	5	16/02/2018
01SDDKI	Polymeric additive manufacturing	4	11/07/2018
01TGTKI	Physical Chemistry of Materials for Nanotechnologies	7	09/09/2019
Winter school: Innovative approaches for material synthesis and characterization		5	23/01/2017
Summer school: CO_2 oling the earth - CO_2 conversion path explained through		3	05/09/2019
EU funded projects			

Electrical, Electronics and

Communications Engineering