

XXXII Cycle

Characterization of Gated Nanochannels Membrane for Active Control of Charged Molecules Antonia Silvestri Supervisor: Prof. Danilo Demarchi

Research context and motivation

Chronic diseases constitute a major public health problem. Only the 50% of individuals with chronic diseases adhere to treatment regimens, posing significant risks of complication and even

mortality. [1] *Current strategies* for therapeutics administration are *systemic*. Upon bolus administration, drug concentration in the body rapidly increases reaching potentially toxic levels and exponentially clears resulting in a small therapeutic window.

On the other hands, *sustained release* platforms use zero-order drug release kinetics, however once implanted there is no option for controlling dosage. Dosing and timing are key factors for effective treatment of chronic diseases. *Chronotherapy* and *personalized medicine* focus a *controlled release*, allowing the administration of therapeutics to follow the specific *circadian rhythm* of the diseases under treatment. [1] Centers for the Medicare&Medicaid Services, Chronic Conditions Prevalence State/Country Table: All Free-for-Service Beneficiaries, 2015. NCOA: National Concil of Aging, www.ncoa.org

Adopted methodologies

Electrochemical Characterization of the membrane

Electrochemical Impedance Spectroscopy EIS: Measurements of the EDL capacitance C_{dl} and Resistance of Charge Transfer R_{ct}. (A) Nanochannel wall immersed in electrolyte; (B) Equivalent Circuit of the nanochannel's system; (C) Nyquist plot of the measured impedance.

Cyclic Voltammetry Measurements: Measurements at different scan rate Transmembrane current I_{ds} at different gate voltage V_{as}. (D) Anodic Peak of current I_{ba} corresponds to Oxidation and Cathodic Peak

Electrochemical System Setup

Current-Voltage Measurements I-V: Measurements of Transmembrane current I_{ds} at different V_{as} for different transmembrane potential V_{ds} .

Addressed research questions/problems

Implantable Capsule **Remotely Controlled** For Drug Release

The Implantable Delivery Systems has been implementated utilizing the Radio Frequency approach.

(A) Coated membrane with SiC or SiO₂; (B) Magnification of the membrane architecture showing PCB the support structure, the PEEK nanochannel and macrochannels layers. Final structure holds 121 macro-channels and 5 mm 24 mm 680000 nanochannels.

Drug refilling por

PEEK lic

Membrar

Department of Nanomedicine, Houston Methodist Research Institute, HMRI, Houston, TX

Novel contributions

Nanochannels membrane offers the possibility to compare the size of molecules and nanochannels, generating an electrostatic

interaction between the liquid and the *electrical double layer EDL*. EDL is the surface-charge distribution at the liquid-solid interface caused by fixed surface charge and compensating counter-ions near the surface. The *transport rate* of the charged molecules can be modulated by altering the EDL. Many drug molecules are charged in solution and thus their diffusion through a nanochannels membrane can be controlled.

Embedded Electrode or nCH wall Negative voltage Negative charg Positive voltage **⊣⊢(I +**)

PEEK holder

No voltage applied

Embedded Electrode

or nCH wal

Applying a *potential* to the wall of the nanochannels, it is possible to expand or reduce the EDL, attracting counter-ions and to repelling co-ions.

Submitted and published works

- Shin, S.R., Zhang, Y.S., Kim, D.J., Manbohi, A., Avci, H., Silvestri, A., Aleman, J., Hu, N., Kilic, T., Keung, W., Righi, M., Assawes, P., Alhadrami, H.A., Li, R.A., Dokmeci, M.R., Khademhosseini, A., "Aptamer-based microfluidic electrochemical biosensor for monitoring cell-secreted trace cardiac biomarkers", American Chemical Society, 2016, 88.20: 10019-10027.
- Shin, S.R., Kilic, T., Zhang, Y.S., Avci, H., Hu, N., Kim, D., Branco, C., Aleman, J., Massa, S., Kang, J., Desalvo, A., Hussaini, M.A., Chae, S.K., Polini, A., Bhise, N., Hussain, M.A., Lee, H.Y., Dokmeci, M.R., Khademhosseini, A., "Label-Free and Regenerative Electrochemical Microfluidic Biosensors for Continual Monitoring of Cell Secretomes", Advanced Science, 2017.
- Zhang, Y.S., Aleman, J., Shin, S.R., Kilic, T., Kim, D., Shaegh, S.A.M., Massa, S., Riahi, R., Shae, S., Hu, N., Avci, H., Zhang, W., Silvestri, A., Nezhad, A.S., Manbohi, A., De Ferrari, F., Polini, A., Calzone, G., Shaikh, N., Alerasool, P., Budina, E., Kang, J., Bhise, N., Ribas, J., Pourmand, A., Skardak, A., Shupe, T., Bishop, C.E., Dokmeci, M.R., Atala, A., Khademhosseini, A., "Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors", Proceedings of the National Academy of Sciences, 2017, 201612906.
- Demarchi, D., Silvestri, A., Aiassa, S., "IRDS International Roadmap for devices and systems", IEEE, 2017 Edition.
- Di Trani, N., Silvestri, A., Bruno, G., Geninatti, T., Chua, C.Y.X., Gilbert, A., Rizzo, G., Filgueira, C.S., Demarchi, D., Grattoni, A., "Remotely controlled nanofluidic implantable platform for tunable drug delivery", Lab on a Chip, 2019

In-Vitro Tests

- Development of a printed circuit board (PCB) for the application of

potential to the gate control of the nanochannel membrane.

- In-vitro and in-vivo experimental tests for validation of the remote control modulation of the release of therapeutic drugs in small and large animals.

Future work

List of attended classes

- 02LWHRV Communication (16/02/2017, 1 cfu)
- 01RISVR Public speaking (16/02/2017, 1 cfu)
- 01QORRV Writing Scientific Papers in English (23/03/2017, 3 cfu)
- 01QRNRV Electromagnetic dosimetry in MRI: computational and experimental methods (27/07/2017, 4 cfu)
- 01PJMRV Etica informatica (05/05/2017, 4)
- 01LCPIU Experimental modeling: costruzione di modelli da dati sperimentali (03/07/2017, 6 cfu)
- 01QZTRR Progettazione di dispositivi medici per la chirurgia (20/07/2017, 4 cfu)
- 01QAAAA BIO/CMOS interfaces and co-design (18/10/2017, 3)
- 01RGGRV Telemedicine and Distributed Healthcare (20/11/2017, 4)
- 01SIHRV Bio-Nano Electronics and BioMolecular Computing (07/09/2018, 4)

Electrical, Electronics and

Communications Engineering