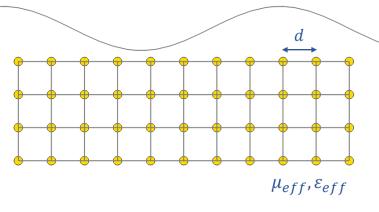


WHAT YOU ARE, TAKES YOU FAR

# XXXIII Cycle

# Anisotropic metasurface for scattering field manipulation **Barbara Cappello** Supervisor: Prof. Ladislau Matekovits

### **Research context and motivation**


••••

1111

111111

**Metamaterials** characteristics:

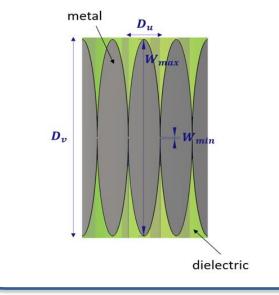
- Artificial periodic structure (arrangement of basic unit cells).
- Homogenisation of the material parameters (if unit cell dimensions << wavelength of the incident EM wave).

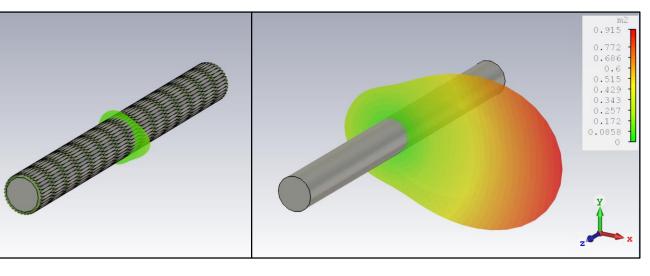


Wavelength  $\lambda \gg a$ 

Global properties that natural materials do not possess.  $\bullet$ 

Acting on the geometrical shape of the unit cell it is possible to properly control the path of the incident electromagnetic wave in the proximity of the object.


Metasurfaces applications: Polarization converters, absorbers, leaky wave antenna, artificial magnetism, **Cloaking**.


**Cloaking applications:** Reducing field distortions from antenna struts, lowering the mutual coupling between nearby antennas, sensors cloaking. Not only in electromagnetics, but also multiphysics applications (acoustic, mechanical or thermal cloaking).

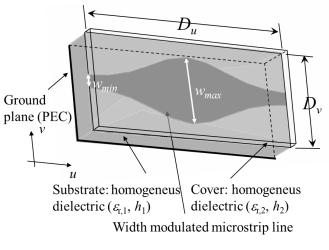
# **Novel contributions**

#### Innovative unit cell: width modulated microstrip line

- Metasurface unit cell: sinusoidally modulated profile.
- Analysis of geometrical parameters on frequency of operation and bandwidth.
- $\rightarrow$  Reduction of the scattered field and restoration of the incident wave.






#### **Cloaking of electrically large objects**

### Addressed research questions/problems

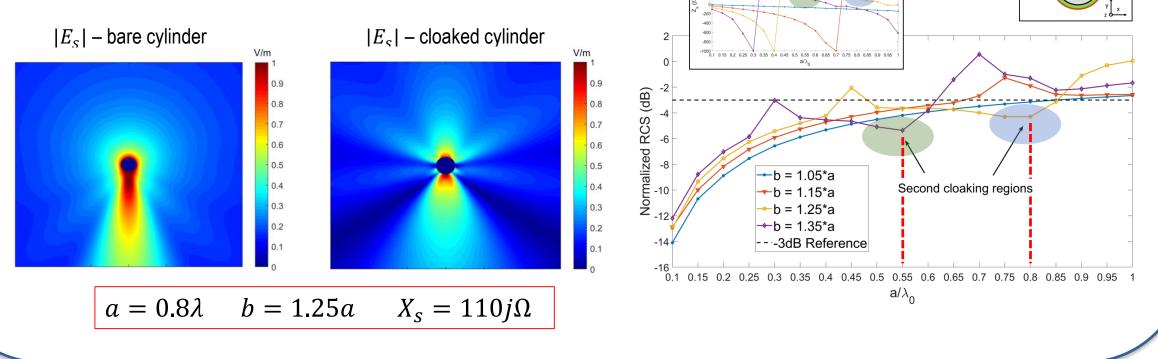
- Investigation of the mantle cloaking of a metallic cylinder.
- Goal: reducing the field scattered by the target object by using a thin metasurface which can be described in terms of an equivalent value of surface impedance  $Z_s$ .
- **Method**: by opportunely tuning the surface impedance, surface waves can be excited on the object boundary, bounding the electromagnetic energy and reducing the scattering.

#### **Challenges:**

**Narrowband:** due to their resonant behaviour, passive cloaking devices are intrinsically of narrowband.

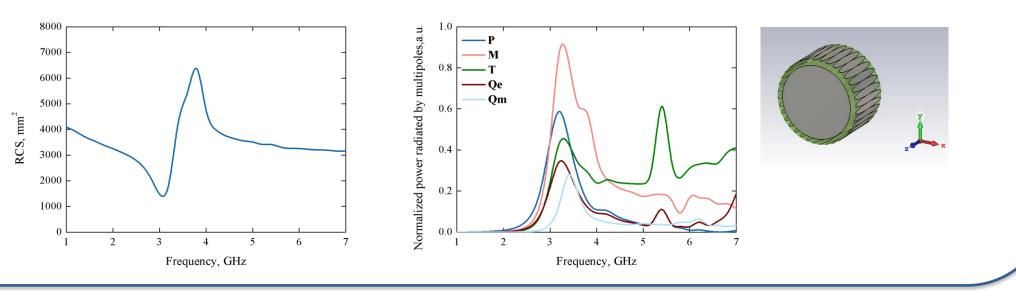


**Electrically large objects:** a larger number of harmonics contributes to the scattered field.


#### **Possible solutions:**

- Width **modulated** microstrip line unit cell  $\rightarrow$  modulated value of surface impedance.
- Using both capacitive and inductive surface impedances.
- Study of the connection between mantle cloaking and manifestation of a non radiating 2) anapole mode.

## Adopted methodologies


- Analysis of the scattered field harmonics and of the surface impedance effect, following a theoretical approach based on Mie theory.
- Characterization of the proposed metasurface in terms cloaking performances.
- Multipole analysis of the scattering from a cloaked structure.

- Theoretical and numerical analysis of the scattered field beyond quasi static regime.
- $\rightarrow$  By opportunely setting the dielectric layer thickness and permittivity it is possible to achieve a "second cloaking region".
- $\rightarrow$  Inductive surface reactance.



#### **Correspondence between cloaking and anapole mode**

- Multipole decomposition of the internal field [7,8].
- $\rightarrow$  At the cloaking frequency, the anapole mode condition is fulfilled.
- $\rightarrow$  Strong response in terms of magnetic dipole.





### List of attended classes

- 01SIVRO Analysis of Mechanical Metamaterials. A short course (18/06/2018, 3 CFU)
- 01SIIRV Introduction to Phased Array Antennas (15/03/2018, 2 CFU)
- 01QCTKG Intro. formulazione hamiltoniana di sistemi classici e quantistici (26/06/2018, 4 CFU)
- 01SGRRV Magnetic materials for electrical energy (23/11/2017, 4 CFU)
- 01QUWRV Mathematical-physical aspects of electromagnetism (15/06/2018, 3 CFU)
- 01SFVRV Metamaterials: Theory and multiphysics applications (01/03/2018, 4 CFU)
- 01RGBRV Optimization methods for engineering problems (13/06/2018, 6 CFU)
- 01QCNKG Proprietà elettroniche del grafene (26/03/2018, 4 CFU)
- 02NQUBG Radio Planning (28/06/2018, 6 CFU)
- 01SHCRV Unsupervised neural networks (09/04/2018, 6 CFU)
- 02LWHRV Communication (19/03/2018, 1 CFU)
- 01SHMRV Entrepreneurial Finance (17/10/2018, 1 CFU)
- 08IXTRV Project management (15/06/2018, 1 CFU)
- 01RISRV Public speaking (14/05/2018, 1 CFU)
- 01RNCRV Public Speaking II (03/05/2019, 2 CFU)
- 01SYBRV Research integrity (08/02/2019, 1 CFU)
- 01SWQRV Responsible research and innovation (25/02/2019, 1 CFU)
- 02RHORV The new Internet Society (14/05/2018, 1 CFU)
- 01SWPRV Time management (06/12/2018, 1 CFU)
- 01TGRRV Uso degli strumenti per un efficace uso del tempo (22/03/2019, 1 CFU)
- 01QORRV Writing Scientific Papers in English (18/04/2019, 3 CFU)
- External course EUPROMETA XXXV Doctoral School on Metamaterials (18/12/2017)
- External course PhD School Extreme Electromagnetic Matter Interactions (19/11/2018)
- External course Summer School on Topological Photonics (08/07/2019)

- Connection between the geometrical parameters of the modulated metasurface to its characteristics in terms of effective dielectric constant and surface impedance.
- Further investigation on the link between cloaking phenomenon and the existence of an anapole mode.
- Introduction of higher order symmetries (such as glide symmetry) and study of their effects on the dispersion characteristics of the metasurface.

# Submitted and published works

[1] Cappello, B., Labate, G., and Matekovits, L., "A Surface Impedance Model for a Microstrip-line based Metasurface", International Conference on Electromagnetics in Advanced Applications (ICEAA), Verona, Italy, 2017, pp. 429-432 (Published). [2] Labate, G., Cappello, B., and Matekovits, L., "A Radial Transmission Line Model for Mantle Cloaking with Impedance Metasurfaces", European Conference on Antennas and Propagation (EuCAP), London, UK, 2018 (Published). [3] Cappello, B., and Matekovits, L., "Effect of Geometrical Parameters of a Width Modulated Microstrip Line based Mantle-Cloak", IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI), Boston, USA, 2018, pp. 1859-1860 (Published).

[4] Cappello, B., and Matekovits, L., "Spectral Composition of the Scattered Field from a Large Metallic Cloaked Cylinder", International Conference on Electromagnetics in Advanced Applications (ICEAA), Cartagena de Indias, Colombia, 2018, pp. 240-243 (Published).

[5] <u>Cappello, B.</u>, Matekovits, L., and Naishadham, K., "Preliminary Study of a Cylindrical Microstrip Metasurface Using the State Space Method", IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI), Atlanta, USA, 2019 (Published).

[6] <u>Cappello, B.</u>, Shestopalov, Y., and Matekovits, L., "Analysis of the Surface Impedance of a Sinusoidally Modulated Metasurface", International Conference on Electromagnetics in Advanced Applications (ICEAA), Granada, Spain, 2019 (Published).

[7] Cappello, B., Ospanova, A., Basharin, A., and Matekovits, L., "Ideal Magnetic Dipole: Scattering and Mantle Cloaking Effects", International Conference on Electromagnetics in Advanced Applications (ICEAA), Granada, Spain, 2019 (Published). [8] Cappello, B., Ospanova, A., Matekovits, L., and Basharin, A., "Mantle cloaking due to ideal magnetic dipole scattering", Scientific Reports, 2019 (Submitted).

[9] Olekhno, N.A., Kretov, E.I., Stepanenko, A.A., Filonov, D.S., <u>Cappello, B.</u>, Matekovits, L., and Gorlach, M.A, "Topological edge states of interacting photon pairs realized in a topolectrical circuit", Nature Communications, 2019 (Submitted).



**Electrical, Electronics and** 

**Communications Engineering**