

XXXIII Cycle

3D POINT CLOUD DENOISING USING A JOINT GEOMETRY AND COLOR K-NN GRAPH

Muhammad Abeer Irfan Supervisor: Prof. Enrico Magli

Research context and motivation

Results

- Point cloud is an important representation of volumetric objects in three-dimensional space, which allows visualization from any viewpoint.
- The acquisition of a point cloud can be done using active sensors, or computed indirectly from multi-viewpoint images, the obtained point cloud suffers from the noise.
- The denoising of point cloud should be performed in order to improve the quality.
- The state-of-the-art technique denoised the geometry based on graph using geometry only.
- The disadvantage of the approach is that correct position of a point is estimated based on the graph signal representing the geometry only, the false surface is computed and as result holes are formed (See Fig. 1).

Natural Point clouds with real noise

- Demonstrate the visual comparison of the proposed algorithm with the denoised point cloud using a graph construction based on geometry only.
- The qualitative comparison has been made on both the real world and synthetic point clouds.

Figure 5: Palazzo_Carignano model: (a) noisy input, (b)

(d) geometry only graph.

Figure 1: Green_monster model: Geometry denoising based on geometry only graph.

Addressed research questions/problems

- How to denoise the geometry of a point cloud having no adverse effects?
- The displaced points in a noisy point cloud are noise? and should we eliminate them or relocate to their original positions?
- Can we relocate the noisy points with the same color to the points in their proximity to their original positions? (See Fig. 2)

Figure 2: Asterix model: Noisy points with the same color in their proximity.

Novel contributions

Graph Construction

- Generate *K*-NN graph based on color similarity and geometry proximity in a 3D plane.
- Defining six-dimensional features for each point as $p_i = [w_1 X_i w_2 C_i]$, with $X_i = [x_{1i} x_{2i}, x_{3i}]$ and

Figure 4: Arco_Valentino model: (a) noisy input, (b) outlierfree input, denoised results by (c) proposed algorithm (d) geometry only graph.

Figure 6: Green_monster model: (a) noisy input, (b) outlierfree input, denoised results by (c) proposed algorithm (d) geometry only graph.

Figure 7: Asterix model: (a) noisy input, (b) outlier-free input, denoised results by (c) proposed algorithm (d) geometry only graph.

Point clouds with synthetic noise

- To simulate the presence of noise, 50% of the points in the noise-free point clouds are affected by noise using uniform distribution.
- The comparative analysis of the proposed denoising algorithm with the state-of-the-art technique on synthetic point cloud is shown in Fig. 8.
- MSE and MCD comparison can be seen in Fig. 9 and Fig. 10.

Figure 8: red dotted section represents point cloud denoising using a joint geometry and color graph and blue dotted section represents point cloud denoising using geometry only.

outlier-free input, denoised results by (c) proposed algorithm

 $C_i = [c_{1i}, c_{2i}, c_{3i}]$ where c_{1i}, c_{2i} and c_{3i} are the color attributes and x_{1i} x_{2i} and x_{3i} are the geometry coordinates of point *i*.

Figure 3: Illustration of a joint geometry and color k-NN graph, node A connected with red colored nodes

analogous to same color in its proximity.

Adopted methodologies

Geometry Denoising

- Geometry denoising is performed by exploiting the graph G constructed from both geometry and color information of the noisy point cloud.
- Convex minimization problem is considered for denoising the graph signal with the limitation that the signal must be smooth on a graph.
- The denoising problem can be written as optimization problem represented by Eq.1

$$\dot{x} = \arg\min_{x} \|x - g\|_{2}^{2} + \gamma \|\nabla_{G} x\|_{2}^{2}$$
(1)

• Where \dot{x} is the approximated denoised signal, the noisy signal is represented by g, γ is a parameter for regularization and $\nabla_G x$ represents the gradient of the signal x on the graph G.

Submitted and published works

- Final draft of a conference paper is ready for submission to ICASSP.
- Drafting of Journal paper is in progress.

List of attended classes

- 01QRQRV Compressed sensing: theory and applications (30/5/19, 4 credits).
- 01TEVRV Deep learning (didattica di eccellenza) (4/6/2019, 6 credits).
- 01SFURV Programmazione scientifica avanzata in matlab (15/5/2019, 4 credits).
- 01QTEIU Data mining concepts and algorithms (6/3/2018, 4 credits).
- 01QSAIU Heuristics and metaheuristics for problem solving: new • trends and software tools (13/7/2018, 4 credits).
- 08IXTRV Project management (15/2/2018, 1 credit).
- 01RELKG Probabilità applicata e machine learning (3/9/2018, 4 credits).
- 01SHCRV Unsupervised neural networks (didattica di eccellenza) (9/4/2018, 6 credits).
- 02LWHRV Communication (15/2/2018, 1 credit).
- 01PJMRV Etica informatica (14/3/2018, 4 credits).
 - 01RISRV Public speaking (15/2/2018, 1 credit).

Communications Engineering