ScuDo Scuola di Dottorato n Doctoral School

 WHAT YOU ARE,TAKES YOU FARXXXIV Cycle

Research context and motivation

$>$ Significant increase in the number of intelligent devices like mobile phones;
\longrightarrow Rapidly growing demands for communication data rates
\longrightarrow Need Wider signal channel
\longrightarrow Need Highly efficient and broadband operation of transmitters
$\checkmark \quad$ So, Broadband Power amplifier with high efficiency and high peak to average power ratio (PAPR) signal are deeply needed.
$>$ The most challenging component in the transmitter that is affected by the PAPR is RF Power Amplifier
\longrightarrow Deliver the maximum output power for a given section of active device
$>$ Final amplification stage before delivering power to the antenna
$>$ Drive a load with high power
\checkmark From an energy standpoint: DC-RF converter controlled by the RF signal

- Application of Power Amplifier:

Telecommunication, radar, electronic warfare, medical microwave imaging

Addressed research questions/problems

Main Factors in Power Amplifiers:

\checkmark Linearity
\checkmark Gain
\checkmark Efficiency
\checkmark Maximum power capability
\checkmark Impedance matching to the output device

Linearization Techniques:

- Polar Modulation
- Predistortion
* Feedforward
* Cartesian Feedback
- Outphasing

High Efficiency PAs:

- Class E PAs
- Class F PAs
* Class A PA with Harmonic

Enhancement

Doherty Power Amplifier:

\checkmark Implement active load modulation technique
\checkmark Adopt a pair of active devices: carrier and peaking modulus
\checkmark Power combining network: by using impedance inverter network (IIN) to sum in phase the output signal of two devices
\checkmark OBO Efficient boosted by auxiliary operation

Pros:

\checkmark High efficiency at 6 dB OBO and High PAPR
\checkmark Capability to increase OBO to more than 6 dB

Submitted and published works

Novel contributions

\checkmark High Efficiency and Wideband Hybrid Doherty Power Amplifier (3.1-3.6 GHz)
\checkmark Based on 10W GaN HEMT active Device from Cree (CGH40010F)
\checkmark Covering most of mobile frequencies (LTE applications)
\checkmark Simple structure for OMN and IMN, appropriate reflection coefficient, High Broadband
\checkmark Simple Post Matching Network
\checkmark Using uneven hybrid 90° splitter $\quad \checkmark$ Tested with a 16 QAM signal

Adopted methodologies

Future work

> Class AB-C Doherty Fabrication and Characterization at circuit and system level
$>$ Linearization through digital Predistortion
$>$ New Class F Doherty PA design
$>$ Investigating input-output harmonic engineering
$>$ Outphasing architecture
\Rightarrow Dual input Doherty PA

List of attended classes

- 01POHOQ - Radio Frequency Integrated Circuits (04/02/2019, 6)
- 01NNLOQ - High Speed Electron Devices (02/01/2019, 6)
- 01MMRRV - Advanced numerical techniques for the analysis and design of antennas (14/03/2019, 4)
- 01QRXIU - Multimedia communications: technological advances and social implications (27/06/2019, 4)
- 03QRHRV - Microelectronics for radiation detection II (03/06/2019, 4)
- 01QRRRV - Advanced iterative techniques for digital receivers (25/06/2019, 4)
- 01LEVRV - Power System Economics (10/05/2019, 3)
- 01PJMRV - IT Ethics (01/04/2019, 4)
- 02LWHRV - Communication (15/04/2019, 1)
- 01RISRV - Public speaking (17/04/2019, 1)
- 01SYBRV - Research integrity (23/04/2019, 1)
- 02RHORV - The new internet society: entering the black-box of digital innovations (23/04/2019, 1)

