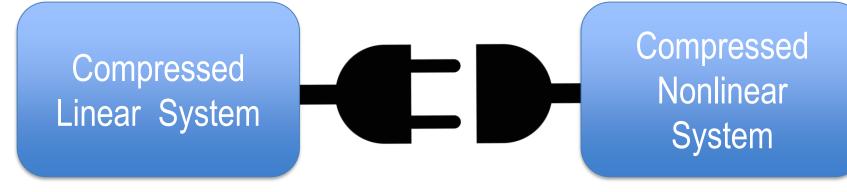


XXXIV Cycle

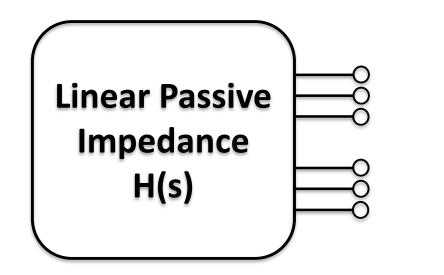
Fast Simulations of Energy Selective Surfaces via Reduced Order Models Marco De Stefano Supervisor: Prof. S.Grivet-Talocia

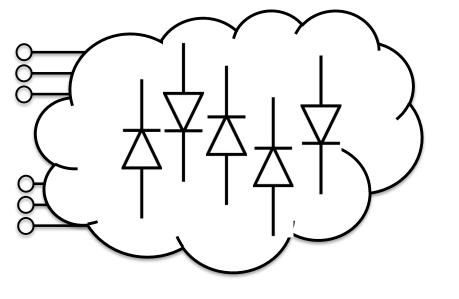

Research context and motivation

- ElectroMagnetic Interference (EMI) is a major concern in robust electronic design.
- Different kind of wireless applications are likely to coexist in the same environment: communication must be allowed, but all components should be shielded from dangerous signals, i.e. electromagnetic pulses (EMP) and high-power microwaves (HPM).
- Conventional shielding techniques involve passive coating structures (absorbers), to dissipate part of the energy of an incident wave.
- Metamaterials, combined with nonlinear circuitry (e.g. diodes bridges), are gaining attention for improving electromagnetic shielding.
- Nonlinear elements allow to decouple the attenuation of **high power** and low power signals.
- Numerical techniques, to design an energy selective structure, include:

Novel contributions

- Consolidation of a reliable passive compressed macromodeling procedure, improving the passivity characterization in the projected (reduced) space (now unavailable).
- Realization of an hybrid simulation environment that takes advantage of the **compressed** model representation enabling fast **time-domain numerical simulations** of the entire interconnect system.
- Further reduction of the computational complexity by exploiting redundancies of the **nonlinear part**, and integration of the obtained small model in a **time-domain set-up**.

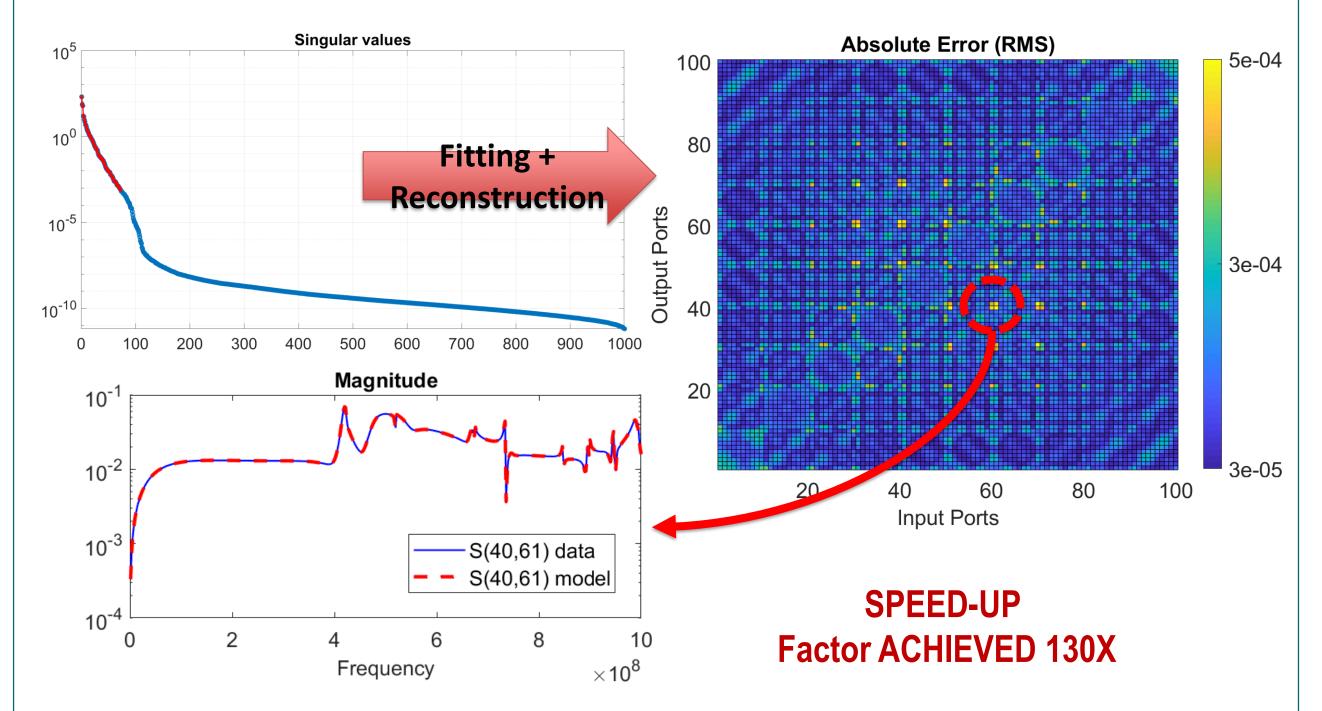

Time Domain Simulation Environment


- **co-simulation** approaches, that combine full-wave and circuit solvers;
- hybrid approaches, based on Ο
 - decoupling linear nonlinear from structures;
 - building dedicated behavioral models;
 - solving with fast methods. 3.

Field-intesity-dependent protection scheme from: Yang, C., Brüns, H.D., Liu, P. and Schuster, C.. "Impulse response optimization of band-limited frequency data for hybrid field-circuit simulation of large-scale energy-selective diode grids", IEEE Trans. EMC, 58(4), pp.1072-1080.

Addressed research questions/problems

In collaboration with the Institute of Electromagnetic Theory of the Hamburg University of Technology (TUHH), that provides the expertise necessary for the characterization of the electromagnetic system, we develop a fast time-domain hybrid solver, that must scale to high-complexity energy-selective surfaces with thousands (or more) NL elements.



ELECTRICALLY LARGE STRUCTURES Macromodeling (and Passivity) Issues

SEVERAL NONLINER LOADS

Adopted methodologies

- Surrogate modeling via rational function approximation, such as Vector Fitting (VF);
- **Compressed macromodeling** techniques that exploit spatial correlation between port signals, based on Singular Value Decomposition (**SVD**);

- **Discrete Empirical Interpolation Methods (DEIM)**, for the dimensional reduction of the nonlinear loads;
- Waveform relaxation, as a time domain simulation technique;

Expensive Simulations

- Can we exploit the port signal redundancy of the linear part, and couple the two systems **only** in a **reduced space**? Can we extend this concept to the time-domain?
- Can we apply a **reduction** technique also to the **nonlinear** part?
- Can we take advantage of the two reductions, and work only with a very **limited amount** of variables to obtain the full time domain behavior of the system? Can we sparsify the transformations at play to reduce even further the complexity at each time step?

Submitted and published works

- Journal: E. Fevola, A. Zanco, S. Grivet-Talocia, T. Bradde, M. De Stefano. "An Adaptive Sampling Process for Automated Multivariate Macromodeling Based on Hamiltonian-Based Passivity Metrics". IEEE TCPMT, 2019 (early access), pp. 1-14.
- Journal: A. Zanco, S. Grivet-Talocia, T. Bradde, M. De Stefano. "Enforcing passivity of parameterized LTI macromodels via Hamiltonian-driven multivariate adaptive sampling". IEEE TCAD, 2018 (early access), pp. 1-14.
- **Conference**: T. Bradde, S. Grivet-Talocia, M. De Stefano, A. Zanco," *A Scalable Reduced-Order Modeling Algorithm for the* Construction of Parameterized Interconnect Macromodels from Scattering Responses". IEEE EMC SI-PI 2018. Long Beach, 30 July – 3 August 2018. pp. 650-655. **BEST PAPER AWARD**
- **Conference**: A. Zanco, S. Grivet-Talocia, T. Bradde, M. De Stefano, "On stabilization of parameterized macromodeling". In: IEEE SPI 2019, Chambery, 18-21 June 2019. pp. 1-4. BEST STUDENT PAPER AWARD
- **Conference**: M. De Stefano, S. Grivet-Talocia, T. Bradde, A. Zanco, "A framework for the generation of guaranteed stable small-signal bias-dependent behavioral models". In: IEEE EuMIC 2018, Madrid, 23-25 September 2018. pp. 142-145.
- **Conference**: T. Bradde, P. Toledo, M. De Stefano, A. Zanco, S. Grivet-Talocia, P. Crovetti, "*Enabling fast power integrity*" transient analysis through parameterized small-signal macromodels", EMC Europe, Barcelona, 2-6 September 2019, pp.1-6
- Conference: A. Zanco, S. Grivet-Talocia, T. Bradde, M. De Stefano. "Multivariate macromodeling with stability and passivity constraints". In: IEEE SPI2018, Brest, 22-25 May 2018. pp. 1-4.
- Conference: E. Fevola, A. Zanco, S. Grivet-Talocia, T. Bradde, M. De Stefano," A 3D passivity-based adaptive algorithm for automated parameterized macromodeling of electromagnetic structures". ICEAA 2019, Granada, 9-13 Sept. 2019, pp. 1-4.

- **Compressed sensing techniques**, for the sparsification of constant transformations;
- **Compressed tensor approximations**, most likely to exploit smart representations leading to faster and more efficient modeling algorithms.

Future work

- Address scalability of the entire modeling procedure, through the realization of a **flexible** yet general formulation of linear model structure in a compressed space.
- Time-domain formulation and application to the coupled compressed systems.
- Enhancement of the passivity characterization and enforcement for the linear system behavioral model in a compact representation.
- Application of reduction techniques for multiport nonlinear circuit blocks, and integration within the overall time-domain simulation environment.

List of attended classes

- 01QRQRV Compressed sensing: theory and applications (28/08/2019, 4 CFU)
- 01QTEIU Data mining concepts and algorithms (14/12/2018, 4 CFU)
- 01SFURV Programmazione scientifica avanzata in Matlab (27/3/2019, 4 CFU)
- 01TCORV Surrogate and compact modeling: theory for the user (12/07/2019, 4 CFU)
- Ext. Activity Sparsity for Physics, Signal and Learning, INRIA, Paris (June 2019, 22h)
- 01RISRV Public Speaking (4/3/2019, 1 CFU)
- 01SYBRV Research Integrity (10/12/2019, 1 CFU)
- 01QORRV Writing Scientific Papers in English (18/4/2019, 3 CFU)

Electrical, Electronics and

Communications Engineering