

34th Cycle

Theoretical, simulation and experimental results on scintillation detection and mitigation. Rayan Imam Supervisor: Prof. Fabio Dovis

MOTIVATION

- Radio signal Scintillations are rapid fluctuations in the ulletintensity and phase of radio waves, generated when a signal passes through irregularities in electron desnsity in the ionosphere.
- These irregularities cause refractions and diffrations to the ulletresulting is unmodelled delays signal, and constructive/destructive signal fluctuations
- Scintillation affects all transionospheric signals: •
 - Communications
 - Global Navigation Satellite Systems (GNSS)

Data, Methodology and Results

I am using Machine Learning Techniques to detect scintillation:

- Supervised Learning
- Unsupervised Learning
- Deep learning

7 September 2017 Svalbard Campa

2.0

- This is critical for some applications :
 - ✓ Aviation
 - ✓ Surveying
 - ✓ Precise Positioning

- Navigation Systems affected in different ways:
- Unmodelled Errors/delays
- Loss of Tracking loops lock
- Complete loss of the signal
- \rightarrow ERROR in POSITION ESTIMATION

AUTONOMOUS Surveying DRIVING

Aviation PRECISE POSITIONING

- On the other hand, scintillated navigation signals can be considered as signals of opportunity to monitor the upper layers of the atmosphere:
- High number of transmitting satellites (more than 100 satellites at the moment)
- Being the expected GNSS signal well known and modeled, the measurement of the distortions can be used to infer atmospheric parameters.

Results of scintillation detection using different supervised ML techniques with different features extracted from GNSS signals:

Using raw raw samples

Feature set	Features included							Training Accuaracy %		
	S4	C/N0	EL	<i></i>	<q></q>	<si></si>	<\$I ² >	Trees	SVM	KNN
L1								96.4	95.5	97.0
L2_2								89.8	94.9	95.0
L4								90.8	60.5	97.0
L5								90.1	95.4	97.2
L6								90.5	95.9	99.4%
L7								89.2	95.2	95.2

Using Averages over time windows \succ

Set	1 minute		3 minutes	Accuaracy	
	covIQ	varSI	covlQ	varSl	KNN
R1					99.5%
R2					99.6%
R3					98.0%
R4					99.7%
R5					99.5%
R6					98.5%

I also tested machine learning on other types of GNSS data. • K-means applied to GNSS-R data for detecting water:

OBJECTIVE

GNSS based scintillation detection and modelling requires proper estimation techniques able to distinguish the effect from other error sources such as noise and multipath.

Future work:

Unsupervised ML for scintillation detection.

- Distinguishing scintillation from multipath and other receiver errors.
- Implementing the detection model on a software radio receiver.
- Multipath due to static environment can be identified analysing time series of collected data at same location due to regularity of the constellations.
- The metrics currently in use for detecting scintillation $(S_4 and \sigma_{\phi})$ have high false alarms as well as high miss rate.
- They do not allow to model fast changes and they model the phenomenon over windows of one minute.

- ✤ In this research I am investigating machine learning (ML) techniques for scintillation detection, using data only from GNSS signals. ✤ Also, I am investigating ML technigues to model other features of GNSS signals

Activities

- The 7th African Space Leadership Congress, November 5-7, 2018, Nigeria
- ESA/JRC International Summerschool on GNSS. July 15 26, 2019, Portugal
- ESA Space Weather for the Mediterranean Region workshop. Sept 26, 2019, Turin.

Submitted and published works

- Imam, R., Pini, M., Marucco, G., Dominici, F., Dovis, F., "Data from GNSS-Based Passive Radar to Support Flood Monitoring Operations", proceedings of the 2019 International Conference on Localization and GNSS (ICL-GNSS), 2019, pp. 1-7
- Cilliers, P., Alfonsi, L., Correia, E., Bergeot, N., Dovis, F., Linty, N., Imam, R., Ward, J., "Multiconstellation GNSS observation of ionospheric scintillation at SANAE-IV in Antarctica", Beacon Symposium August 2019, Poland.
- Favenza, A., Imam, R., Dovis, F., Pini, M., "Detecting water using UAV-based GNSS-Reflectometry data and Artificial Intelligence", 2019 IEEE international workshop on Metrology for Agriculture and Forestry, October, 2019
- Imam, R., Pini, M., Marucco, G., Dominici, F., Dovis, F., "Use of GNSS-based Passive Radar Data to Support Flood Monitoring Operations", Selected Papers from 9th International Conference on Localization and GNSS 2019 (ICL-GNSS 2019) . Under Review.

List of attended classes

ode	Title of the course	(Date, credits)	
1QRQRV	Compressed sensing: theory and applications (28/08/2019, 4)		
1QTEIU	Data mining concepts and algorithms	(14/12/2018, 4)	
1RONKG	Python in the Lab	(06/05/2019, 4)	
1TEHRV	Data Science for Networks (didattica di eccellenza) (15/02/2019, 6)		
1TEVRV	Deep learning (didattica di eccellenza)	(04/06/2019, 6)	
3SGVRV	Entrepreneurship and start-up creation from Uni Research	(09/05/2019, 8)	
1NDLRV	Lingua italiana I livello	(18/06/2019, 3)	
3SGVRV 1NDLRV	Entrepreneurship and start-up creation from Uni Research Lingua italiana I livello	(04/06/2019, b) (09/05/2019, 8) (18/06/2019, 3)	

like multipath and GNSS-Reflectometry.

Electrical, Electronics and

Communications Engineering