= Exploration of Beyond von Neumann

..'..I_'rl . Wi

v s

YL~ = Computing to solve the Memory-Wall

1
FEEEE Ry ny,  Trtrss

WHAT YOU ARE, TAKES YOU FAR  .cvvmm

Andrea Coluccio

XXXV Cycle Supervisor: Prof. Mariagrazia Graziano

Research context and motivation Novel contributions

» The exponential development of transistor technology has been the main driving force| |+ General Purpose LiM architectures are defined by|e LM  Design  Flow s

behind modern electronics. However, this process has slowed over time, introducing employing the Algorithm Profiling approach. automatized with DEXIMA,
performance bottlenecks in data-intensive applications. The leading cause is the| | » Benchmarks are executed with a standard CPU- and the LIM results are
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Fig.1: von Neumann Bottleneck. Performance comparison CPU-Memory [4]

* Logic-in-Memory is rapidly spreading, bringing computing elements as near as possible
to memory while inserting customized processing elements to elaborate more data.

 Energy and time are saved through parallel execution and usage of processing
components with local memory elements.

DEXIMA tool implements the LiM design flow shown in Fig. 7. The results in Fig.8 refer to
Matrix-Vector Multiplication (MVM) algorithm. Fig. 8 (a) shows the performance results of the
LiM array. Figs. 8(b-c) show the instruction count for the CPU-Memory and CPU-Memory-LiM
solutions, respectively. Finally, Fig. 8 (d) illustrates the performance comparisons.
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assist the designer in the realization of the Logic-in-

Memory structures. e Joatiou]

- DEXIMA design flow starts from the LiM architecture - n +  Implementation of beyond-CMOS emerging technologies on DExIMA
definition and implements automatic verification and o d Snera Pure * Implementation of different LiM computing paradigms
performance estimations. implementation [6]  Algorithmic exploration to improve DEXIMA capabilities
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