

35th Cycle

NLI Generation in Wideband and **Disaggregated Optical Networks Elliot London** Supervisor: Prof. Vittorio Curri

Research context and motivation

Significant capacity and throughput increases are required for optical networks to manage accelerating user demands. Wideband transmission presents an attractive solution for this problem, with fast-developing technology that does not require installation of new fiber spans.

Novel contributions

- Within this project, novel contributions were made to NLI modelling, both for wideband and disaggregated optical network architectures.
- A simple relation quantifying the upper bound of the SPM accumulation was found, and then combined with an XPM to model to create the first fully disaggregated NLI model.
- The model was then extended to wideband regimes, non-periodic network layouts, and also permitting QoT prediction for alien wavelengths.

- The generation of nonlinear interference (NLI) in wideband networks is complicated by the effects of stimulated Raman scattering (SRS), frequency-dependent fiber parameter scaling, and the required disaggregation of NLI generation to enable progressive upgrades.
- Subsequently, advances in NLI modelling are required in order to accurately model quality of transmission (QoT) in these near-future optical network architectures.

Addressed research questions/problems

- First, to enable disaggregation, the spectral and spatial separability of the NLI contributors, the self-phase modulation (SPM) and cross-phase modulation (XPM) was investigated.
- The coherency of the SPM was observed, revealing a parameter, C_{∞} , which quantifies the maximum amount of SPM which may be generated for a given system configuration, scaling with $\theta \propto |\beta_2| L_s R_s^2$.
- These findings were combined with knowledge about the accumulation of the XPM, providing a fully disaggregated NLI model for the C-band.

Adopted methodologies

- Research was performed primarily using two advanced simulation frameworks:
- Split-step Fourier method (SSFM) simulations performed within MATLAB, edited to enable wideband and disaggregated transmission, with full modelling of all frequency dependent effects.

- An internal branch of the open-source GNPy library, with similar modifications, providing fast and accurate approximations of the NLI generated within an OLS.
- These two frameworks were both independently verified and used together in order to investigate NLI generation in a variety of network architectures, performing full spectrum, single channel, and pump-and-probe simulations.

Future work

 This model was verified also for realistic network architectures, which include non-uniform links, and for channels with unknown memory, serving as an upper bound in all cases.

Submitted and published works

- E London, E Virgillito, A D'Amico, A Napoli, V Curri, "Simulative assessment of non-linear interference generation within disaggregated optical line systems", Optics Continuum 3 (12) 3378-3389.
- A D'Amico, E London, E Virgillito, A Napoli, V Curri, "Quality of transmission estimation for planning of disaggregated optical networks", ONDM 2020, 1-3.
- A D'Amico, B Correia, E London, E Virgillito, G Borraccini, A Napoli, V Curri, "Scalable and disaggregated GGN approximation applied to a C+L+S optical network", Journal of Lightwave Technology 40 (11) 3499-3511.
- E London, A D'Amico, E Virgillito, A Napoli, V Curri, "Modelling non-linear interference in non-periodic and disaggregated optical network segments", Optics Continuum 1 (4) 793-803.
- E London, E Virgillito, A D'Amico, A Napoli, V Curri, "Observing cross-channel NLI generation in disaggregated optical line systems", Asia Communications and Photonics Conference, W3B. 3
- A D'Amico, E London, E Virgillito, A Napoli, V Curri, "Inter-band GSNR degradations and leading impairments in C+L band 400G transmission", ONDM 2021 1-3.
- A D'Amico, E London, B Le Guyader, F Frank, E La Rouzic, E Pincemin, N Brochier, V Curri, "Experimental validation of GNPy in a multi-vendor flex-grid flex-rate WDM optical transport scenario", JOCN 14 (3), 79-88.

- The final piece of the puzzle is to calculate how the XPM accumulates in dispersioncompensated links and in mixed-fiber optical network layouts, further improving accuracy.
- Both scenarios introduce dispersion-dependent effects which do not guarantee the incoherent accumulation of XPM.
- However, preliminary investigations suggest that these effects still fall below the upper bounds of our model.
- This investigation is currently underway, with results to be submitted to OFC 2023, followed up with a journal paper, to summarize our findings, and the project.

List of attended classes

- 01TRLRV Optical Transport Networks (23/07/2021, 50)
- 01MNFIU Parallel and distributed computing (01/10/2020, 41.67)
- 01QFFRV Tecniche innovative per l'ottimizzazione (26/06/2021, 33.33)
- 01NDLRV Lingua italiana I livello (13/07/2022, 0)
- Lake Como Machine Learning Photonics Online School (15/03/2021, 27)

Electrical, Electronics and

Communications Engineering