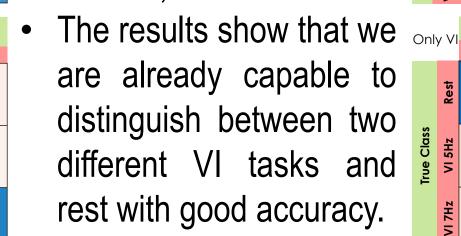


XXXV Cycle

Transition from Visually Evoked to Purely Imagined Steady-State Potentials in Brain-Computer Interfaces erc Davide Consoli Supervisor: Francesco P. Andriulli

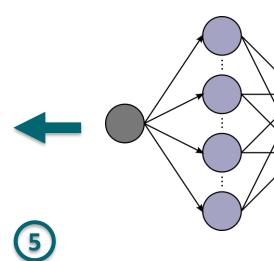

Research context and motivation

- Steady-State Visually Evoked Potential (SSVEP) based Brain Computer Interfaces (BCI) are simple and high performing in terms of bit-rate;
- Unfortunately, they requires external devices to provide the stimuli, limiting the scenarios in which they can be applied. Standard SSVEP-BCI pipeline:
- 1. A subject wearing an ElectroEncephaloGraphy (EEG) helmet focus on a pattern flickering at a certain frequency;
- A brain electric activity that follow the flickering frequency is triggered in 2. the occipital area;
- This activity is recorded from the EEG; З.
- Machine learning algorithms are used to classify the recorded potential;
- Depending on the predicted class an action can be performed from a computer or from an actuator (e.g. move a cursor on a maze).



Novel contributions

5Hz W/ Sound		Pre	7Hz W		Predicted Class					
		VI 5Hz	Rest	SSVEP 5Hz	Sound		VI 7Hz	Rest	SSVEP 7Hz	
True Class	VI 5Hz	48	1	11	s	VI 7Hz	51	2	7	
	Rest	8	51	1	True Class	Rest	12	46	2	
	SSVEP 5Hz	12	1	47	÷	SSVEP 7Hz	14	7	39	



We designed a protocol including six sessions that at the last stage VI consists of only classes;

Adopted methodologies

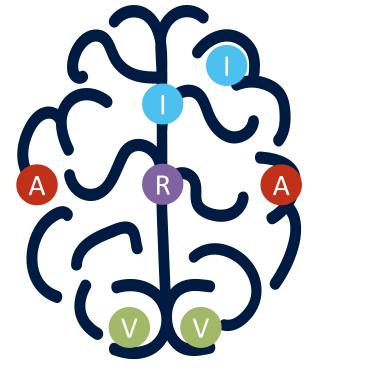
<i>;</i>].		3					-	
		chn 001		chn 0	02		chn 003	
	200		200		1	200		
	0	month	0	-	ht-	0 -	h-1+++++	
	-200		-200		<u>.</u>	200	1.1	
	0	50	100	0 50	100	0	50	100
	_	chn 004		chn 0			chn 006	
	200		200		1	200	1 1	
	0	+++++++++++++++++++++++++++++++++++++++	0	-+++++++++++	h+-	0	the the the	
	-200		-200			200		
	0	50	100	0 50	100	0	50	100
		chn 007		chn 0			chn 009	
	200	1	200		1	200	1	
	0	when the the	0	monenegener	*	0	++++++++	
	-200		-200	· · · · ·		200		
	0	50	100	0 50	100	0	50	100

LEGEND

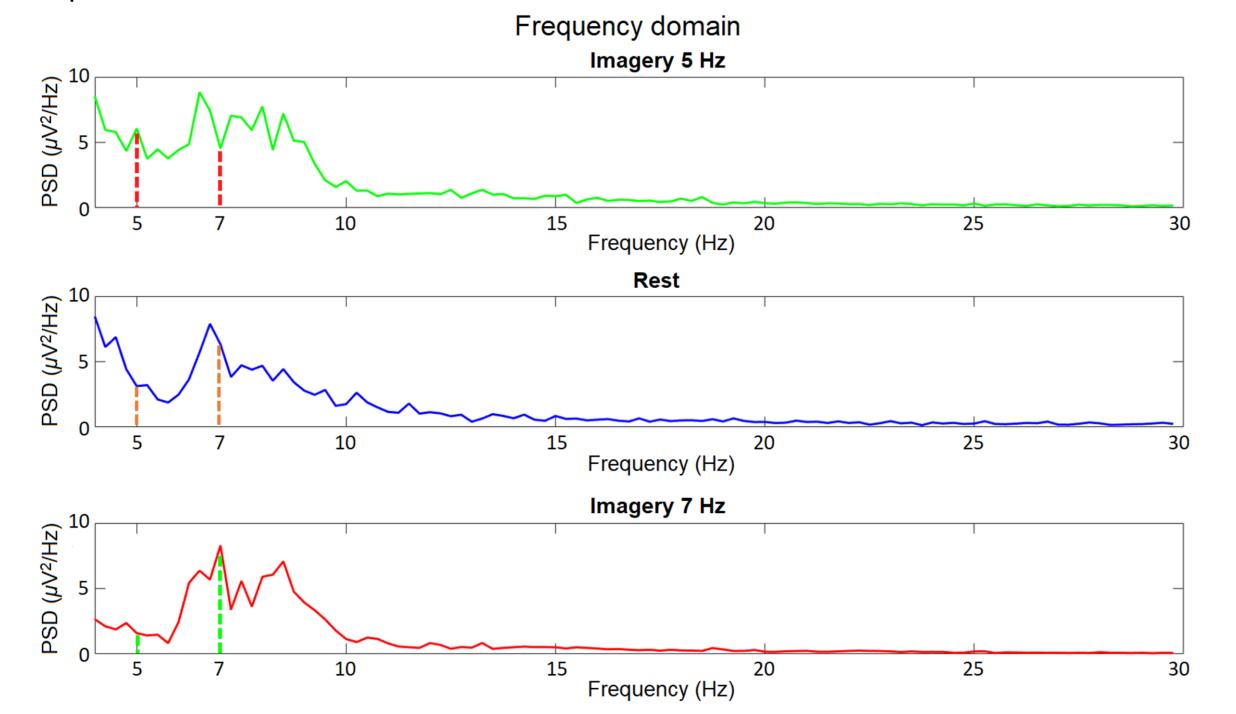
→SSVEP

 \rightarrow ASSR

→Rest

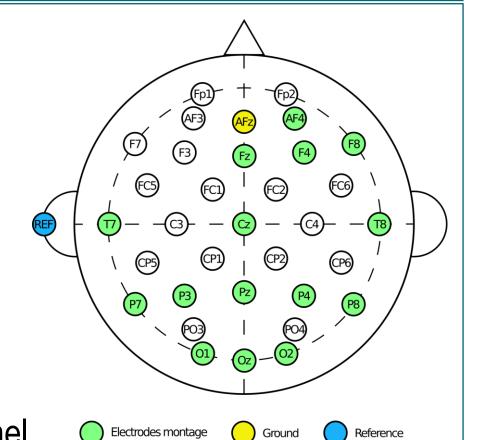

R

 $\rightarrow \vee \mid$


(2)

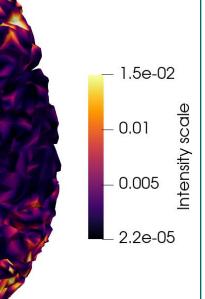
Addressed research questions/problems

• We developed a new BCI paradigm that is based on Visual Imagery (VI) signals, where the subject by simply imaging a flickering pattern triggers an EEG signal that we can classify, avoiding the need of external stimuli; • We used SSVEP and Auditory Steady-State Response (ASSR) to help the subject in the training required to use the VI based BCI.



Brain areas involved in the different brain signals.

Electrodes selection:


- Anatomical based pre-selection;
- Heuristic ad-hoc data-based algorithm for fine selection. Signals processing:
- Filters for electromyographic and line noise attenuation;
- Computing the average Power Spectral Density (PSD) for each electrode in the range 2–36 Hz for each trial. Classification:
- These vectors were fed as features to a regularized Support Vector Machine (SVM) classifier with linear kernel.

Future work

We are investigating the usage of features based on the electric current on the brain to feed the classifier to improve the performances.

- The electric current is
- estimated via non-invasive inverse source imaging tech
 - niques and realistic brain modeling.

List of attended classes

- 02LWHRV Communication (7/1/2020, 6.67)
- 01SHMRV Entrepreneurial Finance (8/3/2022, 6.67) • 01UNWRP – Intercultural & interpersonal management (31/7/2020, 10.67)

Submitted and published works

- S. B. Adrian, A. Dély, D. Consoli, A. Merlini and F. P. Andriulli, "*Electromagnetic Integral Equations: Insights in Conditioning* and Preconditioning" in IEEE Open Journal of Antennas and Propagation, vol. 2, 2021, pp. 1143-1174
- D. Consoli, A. Merlini and F. P. Andriulli, "A Fast Quasi-Conformal Mapping Preconditioner for Electromagnetic Integral Equations" 2021 International Conference on Electromagnetics in Advanced Applications (ICEAA), pp. 412-412, 2021
- Micheli, A., Consoli, D., Merlini, A., Ricci, P., & Andriulli, F. P. B "Brain-Computer Interfaces: Investigating the Transition from Visually Evoked to Purely Imagined Steady-State Potentials", IEEE EMBC, Glasgow, Scotland, 2022
- Merlini, A., Henry, C., Consoli, D., Rahmouni, L., & Andriulli, F. P.. "Laplacian Filters for Integral Equations: Further Developments and Fast Algorithms", IEEE AP-S, Denver, Colorado, 2022
- D. Consoli, C. Henry, M. Monin, L. Rahmouni, P. Ricci, A. Merlini, & Andriulli, F. P. "Recent Advances in Computational *Electromagnetics for High Resolution Neuroimaging*", IEEE AP-S, Denver, Colorado, 2022
- Consoli, D.; Henry, C.; Dély, A.; Rahmouni, L.; Ortiz Guzman, J. E.; Chhim, T. L.; Adrian, Simon B.; Merlini, A.; Andriulli, F. P. "On the Fast Direct Solution of a Preconditioned Electromagnetic Integral Equation", ICEAA/IEEE APWC, Cape Town, South Africa, 2022
- C. Henry; D. Consoli; A. Dely; L. Rahmouni; A. Merlini; F. P. Andriulli, "Fast Direct Solvers Based on the Quasi-Helmholtz Laplacian Filters", IEEE CAMA, Guangzhou, China, 2022

- 01UNYRV Personal branding (14/3/2022, 1.33)
- 08IXTRV Project management (17/3/2022, 6.67)
- 01RISRV Public speaking (13/9/2021, 6.67)
- 01SYBRV Research integrity (15/9/2021, 6.67)
- 02RHORV The new Internet Society: entering the black-box of digital innovations (8/3/2022, 8)
- 01UNXRV Thinking out of the box (3/8/2021, 1.33)
- 01SWPRV Time management (8/3/2022, 2.67)
- 01UZHPQ Aspetti psicologici ed educativi dello sviluppo e dell'apprendimento (23/6/2022, 40)
- IEEE Italy Authorship Symposium (1/12/2020, 1)
- 02SILPQ Pedagogia della scuola e dell'inclusione (27/6/2022, 40)
- 01UJDRV Integral operators and fast solvers: a cross-disciplinary excursus on the best of FFT'companions (26/11/2020, 33.33)
- 01DPJRV Lens antennas: Fundamentals and present applications (7/12/2021, 13.33)
- 01QUWRV Mathematical-physical aspects of electromagnetism (26/10/2020, 25)
- 01UIZRV Microwave sensing and imaging for innovative applications in health and food industry (9/10/2020, 33.33)
- 01MMRRV Tecniche numeriche avanzate per l'analisi ed il progetto di antenne (9/6/2021, 33.33)
- ESoA course Advanced Mathematics for Antenna Analysis (17/5/2021, 66.67)
- Computing@PoliTO Workshop (17/1/2020, 6.68)
- "PitchD the PhD's pitch" organized by the IEEE Politecnico di Torino S.B. (29/1/2020, 1)

Electrical, Electronics and

Communications Engineering