

XXXV Cycle

# **Single Frequency Network Terrestrial** Broadcasting with 5GNR numerology using Recurrent Neural Network Student: Majid Mosavat Supervisor: Prof. Guido Montorsi

## **Research context and motivation**

- Single Frequency Network (SFN) Terrestrial Broadcasting
  - All stations transmit signal at the same time over the same frequency channel
  - Orthogonal Frequency Division multiplexing (OFDM)
  - Symbol by symbol detection
  - CP length increases with Inter Site Distance (ISD)
  - Symbol length reduces with user speed
  - DVB-T2 & ASTC 3.0
- The LTE-based Terrestrial Broadcasting
  - Dedicated for Terrestrial Broadcasting (2.5 kHz and 0.37 kHz)
  - Mobile handheld users and roof-top reception
- The fifth generation New Radio (5GNR)
  - 15 kHz, ..., and 240 kHz carrier spacing
  - Uni-cast and low latency transmission (Maximum ISD 5 km)



#### Adopted methodologies

- RNN System parameters and preliminary data generation for training
  - 12 OFDM carriers with 5GNR (15 kHz)
  - 4-QAM constellation and number of receiver antennas K = 2
  - Speed: LPLT (160 km/h) and HPHT (3 km/h)
  - 10 million pairs  $(y_n, c_n)$  at fixed **SNR= 5 dB** one for LPLT and one for HPHT
- Minimizing the binary cross entropy loss between target and response
- First RNN preliminary Hyper-Parameter optimization ( $\alpha$ , M)
  - Fixing the number of units in RNN cell to U = 400 and dropout probability 0.5
- Then Full training one for LPLT RNN network and one HPHT RNN network

| Reference systems |           |                 |                       |                |         |      | <b>RNN Parameter optimization</b> |                 |  |
|-------------------|-----------|-----------------|-----------------------|----------------|---------|------|-----------------------------------|-----------------|--|
| Carrier           | Max       | Target          | <b>F</b> <sub>d</sub> | T <sub>d</sub> | network | η    | LPLT                              | HPHT            |  |
| Spacing           | 150       |                 |                       |                |         |      | $\alpha = 0.5$                    | $\alpha = 0.5$  |  |
| 2.5 kHz           | 15 km     | Mobile<br>users | 2                     | 2              | LPLT    | 0.6  | M = 15                            | M = 9           |  |
| 0.37 kHz          | 175<br>km | Roof-<br>top    | 3                     | 2              | HPHT    | 0.75 | $\eta = 0.9375$                   | $\eta = 0.9375$ |  |

• Not compatible with broadcaster infrastructures (short CP length  $4.7\mu s$ )

#### Addressed research questions/problems

- Modelling an SFN network with Tap Delay Line (TDL-A)
  - Properly scaling maximum delay spread according to the considered ISD
  - Carrier frequency 700 MHz
  - Maximum Doppler shift 130 Hz (160 km/h)
  - Single Frequency networks
    - High Power High Tower (HPHT)
    - Low Power Low Tower (LPLT)

| arameter | LPLT | HPHT |
|----------|------|------|
| ISD [km] | 15   | 125  |
| DS [µs]  | 20   | 50   |

**SFN Parameters** 

#### The classical OFDM system and position of proposed RNN detector



- The OFDM design for SFN networks becomes progressively inefficient
  - Trade-offs between CP length, channel delay spread, carrier spacing a user mobility
- To remove ISI, the CP larger than the delay spread (DS) • To remove ICI, symbol smaller than channel coherence time • Pilots introducing a large overhead • To support 5GNR numerologies for Terrestrial broadcasting • An advanced OFDM detector capable of dealing with large ISI/ICI • May eliminate the CP inefficiency, but cannot eliminate inefficiency due to the required pilot density

#### **Simulation results**



#### **Novel contributions**

- **5GNR SFN Terrestrial broadcasting** with Bidirectional Long Short-Term Memory
  - Replacement of the channel estimator, channel equalization, and LLR with one RNN
  - Superimposing pilot and data signals
    - $z = d\sqrt{1-\alpha^2} + p\alpha$



#### **Unrolled RNN detector**

### **Future work**

- Reduction of complexity of RNN network
- Higher order modulations
- The scaling of the proposed receiver solution to the practical bandwidth
- Adoption for mobile SFN network with 5GNR numerology of other types of advanced but classical receivers
- The flexibility of a single trained RNN also to different network infrastructures ISD

## List of attended classes

- 01QRRRV Advanced iterative techniques for digital receivers (12/7/2021, 4)
- 01UJBRV Adversarial training of neural networks (1/7/2020, 3)
- 01QTEIU Data mining concepts and algorithms (20/1/2020, 4)
- 01UNRRV Entrepreneurship and start-up creation (3/7/2020, 8)
- 01UJUIU Human-Ai Interaction (9/2/2022, 4)
- 01RGBRV Optimization methods for engineering problems (15/6/2020, 6)
- 01SFURV Advanced scientific programming in MATLAB (29/6/2020, 4)
- 01NDLRV Lingua italiana I livello (17/2/2022, 3)

## Submitted and published works

- Mosavat, M.; Montorsi, G. Single Frequency Network Broadcasting with 5GNR Numerology. In Proceedings of the 2021 IEEE Latin-American Conference on Communications (LATINCOM). IEEE, 2021, pp. 1–6.
- Mosavat, M.; Montorsi, G. Single Frequency Network Terrestrial Broadcasting with 5GNR 2. numerology using Recurrent Neural Network. Electronics 2022





**Electrical, Electronics and** 

**Communications Engineering**