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CONS:

• NON-convex optimization problem 

→ Hard to train, data-hungry

PROS:

• NON linear model structure

• Flexible topology

• Natural extension to multi-output

➢ Kernel regression provides a clever alternative to ANN structure allowing to heavily 

simplify the model training.

PROS:

• Linear model structure

• Convex optimization problem

- Fast to train

- Fast convergence w.r.t. training 

samples

CONS:

• Fixed topology

• Scalar-valued methods 

➢ Nowadays Artificial Neural Network (ANN) is the most popular Machine Learning

method. ANN-based regression can be adopted to build accurate surrogate model.
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Output 

component

• Multi-Output Scenario & Scalar Regression 

Too many models and 

hyperparameters to tune!!! 

No protection against 

noise!!! 

• Multi-Output Kernel Ridge Regression:
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where 𝑘 𝒙𝑖 , 𝑑 , 𝒙∗, 𝑑
′ is a “new” kernel  

function acting on both the input space and output 

components

• How can we reduce the computational cost of the training phase?

• How can we automatically obtain the optimal structure of the multi-output kernel?

• Example I: High Speed Link

GOAL: Build a surrogate model for the 

transfer function |𝑦 𝑓; 𝒙 | as function of 

the circuit parameters 𝐶1(𝑥1), 𝐶2 𝑥2 , 

𝐿1 𝑥3 and 𝐿2 𝑥4 .

• Example II : Doherty Power Amplifier for Wireless Applications

GOAL: Optimize the power splitter such that: 10dB ≤ 𝑆21 𝑓 ≤ 12dB for 𝑓 ∈ [2.1,2.9]GHz

• Optimization and uncertainty quantification are key ingredients for the design of

microwave structures and electronic devices.

• Such tasks are usually carried out synthetically via computer experiments (simulations),

based on the computational model.

• Computational model is a procedure (e.g., a solver) able to compute quantities of

interest from the input parameters (e.g., geometrical/electrical parameters).

• Surrogate model ෩ℳ is “a model of a model”, i.e., a fast-to-evaluate model of the

computational model (i.e., the solver).

✓ Speed-up 15X w.r.t. ADS

50% variability!!!

14 parameters
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WARNING

The computational cost of 

the computational model can 

be huge!!!
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• In complex non-linear problem with dozen input parameters, the accuracy of the

surrogate model depends on the fitting or regression techniques used to train it.

Research context and motivation

E.g., for a separable kernel:

𝑘 (𝒙, 𝑑), (𝒙′, 𝑑′) =

=𝑘𝒙 𝒙, 𝒙′ ⋅ 𝑘𝑜 𝑑, 𝑑′

WARNING: Most of the EM applications require a MULTI-OUTPUT formulation!!!

IDEA: 

Use a scalar regression for 

each output components

RESULT: Comparison among the proposed multi-output kernel regression, ANN and 

PCA+LS-SVM on 1000 test samples 

RESULTS:
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