

XXXV Cycle

Microwave Imaging Algorithms for Biomedical Applications Valeria Mariano Supervisor: Prof. Francesca Vipiana

Research context and motivation

Novel contributions

BRAIN STROKE

It is one of the most common cardiovascular diseases. There are two types of stroke: **ISCHEMIC** and **HEMORRAGIC**

THERAPY

- **Tipology** of the stroke
- Intervention **TIME**

IMAGE RECONSTRUCTION ALGORITHM

Novel discretization of the CSI method that **simplifies** the algorithm implementation and, at the same time, improve the **accuracy** of the discretized quantities.

MACHINE LEARNING ALGORITHM

An alternative method, based on the Born approximation and the **linearization** of the scattering operator, which minimizes the time to generate a large data set needed to train the machine

BASIC CONCEPT

dielectric Considerable contrast between stroke region and healthy brain tissues at microwave frequencies

Addressed research questions/problems

ACQUISITION BLOCK

IMAGE RECONSTRUCTION ALGORITHM

The Contrast Source Inversion (CSI) method is a non linear iterative algorithm for quantitative reconstructions

MACHINE LEARNING ALGORITHMS

ML is used to detect the presence and the tipology of the stroke and the affected head region

Adopted methodologies

Comparison between the original and the proposed discretization, starting from simple geometry to more complex ones.

These tests reveal the **better resolution** of variables with the new discretization.

Generation of a dataset composed by 10000 samples through a linearized integral **operator** and tests with 3 different ML algorithms:

 $\Delta S \cong \mathcal{S} \left\{ \Delta \chi(\underline{r}) \right\}$

Differential Scattering **Parameters**

Dielectric contrast

13 hours << 3.5 years with full–wave simulations!

Future work

Optimization of the 3D code

Generation of more head models

Submitted and published works

- Mariano, V., Tobon, J.A., Scapaticci, R., Crocco, L., Kosmas, P., and Vipiana, F., "Comparison of Reconstruction Algorithms for Brain Stroke Microwave Imaging", IEEE IMBioC, Toulouse, 2020, pp. 1-3
- Mariano, V., Tobon, J.A., and Vipiana, F., "Discretization Error Analysis in the Contrast Source Inversion" Algorithm", EuCAP, Dusseldorf, 2021, pp. 1-4
- Mariano, V., Tobon, J.A., Casu, R.M., and Vipiana, F., "Model-Based Data Generation for Support Vector Machine Stroke Classification", APS/URSI, 2021, pp. 1685-1686
- Mariano, V., Tobon, J.A., Scapaticci, R., Crocco, L., and Vipiana, F., "An efficient implementation of CS-FEM Inversion Schemes for Microwave Imaging Applications", URSI, Rome, 2021
- Mariano, V., Casu, R.M., and Vipiana, F., "Simulation-based Machine Learning Training for Brain Anomalies Localization at Microwaves", EuCAP, Madrid, pp. 1-3
- Mariano, V., Tobon, J.A., Casu, R.M., and Vipiana, F., "Efficient Data Generation for Stroke Classification via Multilayer Perceptron", APS/URSI, Denver
- Mariano, V., Tobon, J.A., Casu, R.M., and Vipiana, F., "Brain Stroke Classification via Machine Learning Algorithms Trained with a Linearized Scattering Operator", submitted to IEEE Transactions on Antennas Propagation
- Mariano, V., Tobon, J.A., and Vipiana, F., "A Novel Discretization Procedure in the CSI-FEM Algorithm for Brain Stroke Microwave Imaging", submitted to MDPI Sensors

Tests with **experimental data**

for the training set phase

Testing with **experimental data**

List of attended classes

 \bullet

- 01QAAAA Data mining for the analysis of clinical studies (18/3/2021, 33.33)
- 01UJIRO Lens antennas: Fundamentals and present applications (6/12/2021, 16.67)
- 01QUWRV Mathematical-physical aspects of electromagnetism (25/10/2020, 20.00)
- 01UIZRV Microwave sensing and imaging for innovative applications in health and food industry (8/10/2020, 33.33)
- 01SFURV Programmazione scientifica avanzata in matlab (26/4/2020, 37.33)
- 01MMRRV Tecniche numeriche avanzate per l'analisi ed il progetto di antenne (8/6/2021, 33.33)
- Principi, materiali ed applicazioni della robotica nella biomedicina (5/3/2020, 25.05)
- Computing@Polito Workshop (16/1/2020, 5.32)
- COMPRESSIVE SENSING IN ELECTROMAGNETICS (3/2/2021, 46.76)
- Microwave Imaging and Diagnostics: Theory, Techniques, and Applications (24/10/2021, 35.91)
- Getting Started with AI in MATLAB (15/3/2021, 2)
- 02LWHRV Communication (27/11/2019, 6.67)
- 01DMJRV Design Thinking, Processes and Methods (3/5/2022, 2.67)
- 01SHMRV Entrepreneurial Finance (3/5/2022, 6.67)
- 01UNVRV Navigating the hiring process: CV, tests, interview (20/7/2020, 2.67)
- 01UNYRV Personal branding (2/11/2020, 1.33)
- 08IXTRV Project management (9/4/2020, 6.67)
- 01RISRV Public speaking (11/12/2020, 6.67)
- 01SYBRV Research integrity (29/2/2020, 6.67)
- 01SWQRV Responsible research and innovation, the impact on social challenges (7/4/2020, 6.67)
- 02RHORV The new Internet Society: entering the black-box of digital innovations (18/3/2020, 8)
- 01UNXRV Thinking out of the box (13/11/2020, 1.33)
- 01SWPRV Time management (2/12/2019, 2.67)

Electrical, Electronics and

Communications Engineering