

XXXV Cycle

Multiscale & Multiphysics Modelling of VCSELs **Alberto Gullino** Supervisors: Prof. M. Goano, F. Bertazzi, G. Ghione

Research context and motivation

850 nm AlGaAs oxide-confined Vertical-Cavity Surface-Emitting Lasers (VCSELs)

 \succ Ideal for optical fiber coupling \succ Excellent dynamic properties >Low production, testing and packaging costs

They represent the state-of-the-art for **short-range** communication in datacenters.

> **TCAD** (technologically computer aided design) approach avoids slow and expensive prototyping campaigns

Adopted methodologies

Multiscale and multiphysics **physics-based** approach:

• Electrical solver → quantum-corrected (for QWs) drift-diffusion (DD) model solved applying Newton's scheme **Self-consistency**

NEGF

- Thermal solver \rightarrow static heat equation is solved
- **Optical** solver \rightarrow in-house electromagnetic solver **VELM**
- \rightarrow TJ modeling with NEGF

Added to other **GR** mechanisms in the DD (Auger, SRH, radiative)

 $G_{BTBT}(z, V_{TJ}) = \frac{1}{q} \frac{J_{TJ}(V_{TJ})}{L_{TJ}}, z \in TJ$

Optical

Addressed research questions/problems

7.0- אַ

pin VCSEL

p-doped top mirror (DBR) introduces: higher free-carrier absorption (FCA) $\overline{\mathbf{S}}$ larger electrical resistivity

earlier thermal roll-over worse RC time constant (limits the VCSEL bandwidth)

TJ-VCSEL

Alternative design relies on **tunnel junctions**: holes injection inside the active region lossy *p*-doped region limited to just few nm of the TJ \rightarrow top-DBR is *n*-doped!

> TJ Heavily doped ---E_F Reverse bias

> > \rightarrow band-to-band tunneling (BTBT) dominates!

- Structure details (**Solid**: TJ-VCSEL; **Dashed**: *pin*) 3 GaAs QWs \rightarrow SW antinode
- **TJ**: AlGaAs \rightarrow SW node; radially extended over all the VCSELs

Novel contributions

D1ANA

- **1D** simulation \rightarrow no radial features
- Needs to be calibrated
- Very fast \rightarrow parametric campaigns

VENUS

Thermal

Electrical

- **3D** full simulation (cylindrical symmetry)
- Accurate on commercial *pin* VCSELs
- Heavy computational burden

- ✓ **VENUS** well reproduces experimental data of a <u>commercial</u> *pin* VCSEL
- After our calibration, similar results come out from **D1ANA**
- **Oxide aperture**: provides current and optical confinement
 - $pin \rightarrow SW$ node
 - $TJ \rightarrow$ between MQW and TJ

DBRs

10

z, nm

Submitted and published works

- Gullino, A., Tibaldi, A., Bertazzi, F., Goano, M., Daubenschuz, M., Michalzik, R., Debernardi, P., "Modulation response of VCSELs: a physics-based simulation approach", Proc. Of NUSOD 2020, Turin, 2020
- Tibaldi, A., <u>Gullino, A.</u>, Montoya, J. G., Matteo, A., *et al*, "Modeling Tunnel Junctions for VCSELs: A Self-Consistent NEGF-DD Approach", Proc. Of NUSOD 2020, Turin, 2020
- Tibaldi, A., Montoya, J. G., Matteo, A., <u>Gullino, A., et al.</u>, "Analysis of Carrier Transport in *Tunnel-Junction Vertical-Cavity Surface-Emitting Lasers by a Coupled Nonequilibrium* Green s Function Drift-Diffusion Approach", Phys. Rev. Appl., vol. 14, n. 2, 2020, pp. 024037
- <u>Gullino, A.,</u> Tibaldi, A., Bertazzi, F., Goano, M., Debernardi, P., "*Reduced dimensionality*" multiphysics model for efficient VCSEL optimization", Appl. Sc., vol. 11, n. 15, 2021, pp. 6908
- Gullino, A., Pecora, S., Tibaldi, A., Bertazzi, F., Goano, M., Debernardi, P., "A multiscale approach for BTJ-VCSEL electro-optical analysis", Proc. Of NUSOD 2021, Turin, 2021
- D'Alessandro, M., <u>Gullino, A.</u>, Tibaldi, A., Bertazzi, F., Goano, M., Debernardi, P., "Physics-based time-domain modeling of VCSELs", Proc. Of NUSOD 2022, Turin, 2022

 \times <u>TJ-VCSEL</u>: prediction from the two solvers (keeping fixed all the parameters) are slightly different \rightarrow highly doped TJ improves radial carrier diffusion? Better confinement?

Future work

The first step is to get experimental data on TJ structures, to properly calibrate VENUS and D1ANA with NEGF (a collaboration with TRUMPF Photonics just started).

Then, there are some interesting directions that must be pursued:

Lithographically defined TJ, that gets rid of the critical oxide	Dynamic (small-signal) response of the two VCSELs	Multiple TJ (MTJ) VCSELs: stack of TJs and MQWs enhances the internal quantum efficiency of the
aperture		VCSELs through the "carrier
		recycling" principle

List of attended classes

- 01UJGRV Advanced devices for high frequency applications (27/5/2020, CFU: 4)
- 01DOJRV Computational (opto) electronics: a journey through device-level models (30/8/2022, CFU: 3.6)
- 02IUGKG II metodo Monte Carlo (3/4/2020, CFU: 6)
- 01UIYRV Physics-based modeling of semiconductor devices (1/4/2020, CFU: 3)
- 01SFURV Programmazione scientifica avanzata in matlab (25/5/2020, CFU: 4)
- 01DNYRV Semiconductor light sources for engineers (12/9/2022, CFU: 4)

Electrical, Electronics and

Communications Engineering