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Novel contributions
• A HW-model-in-the-loop compression methodology allowing design space exploration of

CNN quantization and pruning strategies and hardware platforms at different design

phases [1,2,6]. A genetic agent is used to navigate the quantization search space in [1-2],

whereas a reinforcement learning agent is used to select optimal pruning policies in [6].

• A map-space exploration framework that can find the optimal scheduling of CNN

workloads executed on re-configurable hardware accelerators based on spatial arrays,

which exploits different hardware and CNN abstraction levels to increase/reduce the

search space dynamically, to find the schedule that minimizes data movement [1,5,6].

• An error resilient and adversarial robust training strategy for quantized CNNs, based on

the observation that models quantized with smaller scaling factors tend to be significantly

less susceptible to errors, compared to models with larger ones [3].

• An analytical model of inter-layer scheduling that leverages intermediate data reuse to

reduce data movement during the inference on resource-constrained devices, reducing

computation energy and latency. This is achieved by fusing the execution of multiple

workloads with data dependencies [5].

Addressed research questions/problems
• Co-design improves the trade-off decision between task accuracy and hardware

performance. However, the combined search space of model compression and hardware

mapping cannot be explored exhaustively due to its complexity. Therefore, it is important to

find an optimal search strategy to explore the design space [1,2,4,5,6].

• Model compression techniques such as pruning and quantization can be leveraged to

reduce data movement and the energy and delay of each operation, respectively [1,2,6].

• Errors can occur due to logic transient, physical defects or adversarial attacks. Hardware-

aware and error-aware training and compression strategies can be used to mitigate faults

and improve energy efficiency. Compressed models are more susceptible to misdetections

induced by malicious adversarial attacks and to computation errors due to logic transients

alike [3].

• To holistically optimize both the CNN and the target hardware accelerator for deployment,

several abstraction levels must be considered.

Research context and motivation
• Convolutional Neural Networks (CNNs) are the standard in computer vision tasks, such as

image classification, semantic segmentation and object detection.

• State-of-the-art CNNs require billions of multiply-and-accumulate operations to process a

single image.

• Due to the high computational demands, CNNs are usually executed on specialized

hardware (HW) accelerators. Moreover, to meet hardware constraints such as energy and

latency, CNNs are compressed with pruning or quantization techniques.

• Additionally, error resilience and model compression are of paramount importance in

safety-critical systems such as the onboard computer of an autonomous electric vehicle.

Adopted methodologies
• In HW-Flow and its variants [1,5,6], the map

space is explored through iterative steps.

Relevant CNN/HW metrics are evaluated 

to compare the relative performance of the
mapping and select the best solution.

• In HW-Flow-Fusion, this three-step approach is adapted to support layer fusion. In phase 1

are searched which layers of a CNN can be fused and scheduled with the available on-

chip memory. In phase 2 are selected the fused loop schedules that have high bandwidth

efficiency. In phase 3, the remaining schedules are evaluated considering low-level HW

details such as NoC/MAC/RF energy and computation latency.

Future work

• Analysis of bit-level pruning techniques to increase 0s within each operand, to reduce

dynamic energy of communication and computation and allow compressed data

movement. The target hardware architecture is based on a bit-serial accelerator.

• Detection of errors in the output of CNNs for object detection by leveraging the temporal

correlation in sequences of frames. Errors are detected by an external agent, the correct

prediction is estimated and used for both the current output and future error detection.

• Approximate arithmetic-aware training schemes to reduce the accuracy drop of CNNs due

to arithmetic errors (continuation of work [3]). The goal is to trade-off task accuracy with

reduced energy, latency, and area.
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