Hardware and Software Co-design for
Accelerating Convolutional Neural
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Research context and motivation

 Convolutional Neural Networks (CNNSs) are the standard in computer vision tasks, such as
image classification, semantic segmentation and object detection.

« State-of-the-art CNNs require billions of multiply-and-accumulate operations to process a
single image.

* Due to the high computational demands, CNNs are usually executed on specialized

nardware (HW) accelerators. Moreover, to meet hardware constraints such as energy and

atency, CNNs are compressed with pruning or quantization techniques.

 Additionally, error resilience and model compression are of paramount importance in
safety-critical systems such as the onboard computer of an autonomous electric vehicle.

Addressed research questions/problems

Co-design improves the ftrade-off decision between task accuracy and hardware
performance. However, the combined search space of model compression and hardware
mapping cannot be explored exhaustively due to its complexity. Therefore, it is important to
find an optimal search strategy to explore the design space [1,2,4,5,6].

Model compression techniques such as pruning and quantization can be leveraged to
reduce data movement and the energy and delay of each operation, respectively [1,2,0].
 Errors can occur due to logic transient, physical defects or adversarial attacks. Hardware-
aware and error-aware training and compression strategies can be used to mitigate faults
and improve energy efficiency. Compressed models are more susceptible to misdetections
iInduced by malicious adversarial attacks and to computation errors due to logic transients
alike [3].
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* To holistically optimize both the CNN and the target hardware accelerator for deployment,
several abstraction levels must be considered.

List of attended classes

« 01UMNRYV - Advanced deep Learning (15/6/2021, 30)

* 01UJBRV - Adversarial training of neural networks (3/6/2021, 15)

* 01UJRIU - Computing Paradigms for Error-Tolerant Applications (26/7/2021 25)
 03QTIIU — Mimetic learning (8/3/2021, 20)

« 01DNMIU - Optimized execution of neural networks at the edge (5/9/2022, 25)

Networks on Edge Devices

Emanuele Valpreda

Supervisors: Prof. Maurizio Martina, Prof. Guido Masera

Novel contributions

* A HW-model-in-the-loop compression methodology allowing design space exploration of
CNN quantization and pruning strategies and hardware platforms at different design
phases [1,2,6]. A genetic agent is used to navigate the quantization search space in [1-2],
whereas a reinforcement learning agent is used to select optimal pruning policies in [6].

* A map-space exploration framework that can find the optimal scheduling of CNN
workloads executed on re-configurable hardware accelerators based on spatial arrays,
which exploits different hardware and CNN abstraction levels to increase/reduce the
search space dynamically, to find the schedule that minimizes data movement [1,5,6].

* An error resilient and adversarial robust training strategy for quantized CNNs, based on
the observation that models quantized with smaller scaling factors tend to be significantly
less susceptible to errors, compared to models with larger ones [3].

 An analytical model of inter-layer scheduling that leverages intermediate data reuse to
reduce data movement during the inference on resource-constrained devices, reducing
computation energy and latency. This is achieved by fusing the execution of multiple

workloads with data dependencies [J].
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Adopted methodologies
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* In HW-Flow-Fusion, this three-step approach is adapted to support layer fusion. In phase 1
are searched which layers of a CNN can be fused and scheduled with the available on-
chip memory. In phase 2 are selected the fused loop schedules that have high bandwidth
efficiency. In phase 3, the remaining schedules are evaluated considering low-level HW
details such as NoC/MAC/RF energy and computation latency.
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 Analysis of bit-level pruning techniques to increase Os within each operand, to reduce
dynamic energy of communication and computation and allow compressed data
movement. The target hardware architecture is based on a bit-serial accelerator.

« Detection of errors in the output of CNNs for object detection by leveraging the temporal
correlation in sequences of frames. Errors are detected by an external agent, the correct
prediction is estimated and used for both the current output and future error detection.

 Approximate arithmetic-aware training schemes to reduce the accuracy drop of CNNs due
to arithmetic errors (continuation of work [3]). The goal is to trade-off task accuracy with
reduced energy, latency, and area.
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