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Novel contributions
1. We propose a new reconfigurable modified Radix-4 Booth signed multiplier with 4:2

compressor tree and final adder with Sum-Together (ST) mode (Fig. 1-(a)).
• Other than 16-bit full precision multiplication, it can be reconfigured to support dot-product

computations at reduced precision (8 and 4 bits).
• It exploits normal alignment of partial products in a standard multiplier (Fig. 3), enabling

the computation of dot products when two or four scalar inputs are packed in each
operand without any additional costs.

• When used in low-precision configurations, the multiplier reduces the cycles of MACs.
2. We show how the flexibility of ST multipliers can be exploited in layer-specific DNN

accelerators (Fig. 1-(b)): 2D-Convolution, Depth-wise Convolution and Fully- Connected.
3. We show how these accelerators are obtained with High-Level Synthesis (HLS) (Fig. 3).

Addressed research questions/problems
• When running DL applications on edge devices, energy and latency of these MAC units

have to be minimized.
• Mixed-precision quantization is a smart technique to squeeze DNNs without loosing

accuracy, but it requires precision-scalable hardware support.
• Data precision may vary across different applications, but also within the same application,

therefore hardware need to be runtime reconfigurable in precision.
• To speedup the execution of DNN models, faster MAC units and hardware accelerators are

needed.

Research context and motivation
• At the basis of Deep Learning (DL) algorithms are convolutions and matrix multiplications,

which require the computation of many dot products and simple scalar multiplications
between features and weights.

• These operations are typically executed by multiply-and-accumulate (MAC) units.
• Edge devices are often resource constrained devices that need low execution latency.

Results & Future work
1. On a 28-nm technology, at the cost of limited overhead in area and power compared to a

non-reconfigurable design, our multiplier/dot-product unit is superior to other
reconfigurable units proposed in the literature (Tab. 1).

2. We made a design-space exploration (DSE) via Catapult HLS varying accelerators
memory sizes, MAC units parallelism, clock frequency (and even ST multipliers type).

• The results of the DSE show many reconfigurable Pareto points, especially for low-
precision configurations, which dominate the non-reconfigurable counterparts (Fig. 4).

• Our findings allow the designers to select the best ST-based accelerator depending on the
target, either high performance, low area (or low power).

• In future, we plan to integrate these ST-based accelerators into a System-on-Chip with a
RISC-V processor to compute heterogeneously quantized DNNs.

[2] M. Gautschi et al., “Near-threshold RISC-V core with DSP extensions for scalable IoT endpoint devices,” IEEE TVLSIS, vol. 25, no. 10, pp. 2700–2713, 2017.
[3] Zhang, Z. Li, and Q. Zheng, “Design of a configurable fixed-point multiplier for digital signal processor,” in Proc. PrimeAsia, pp. 217–220, 2009.
[4] R. Lin, “Reconfigurable parallel inner product processor architectures,” IEEE TVLSIS, vol. 9, no. 2, pp. 261–272, 2001.
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Fig. 2: Alignment of PPi partial products for CONFIG 8x8 (a) and 4x4 (b).

Fig. 1: ST multiplier and its five configurations (a), and working principles of our ST-based DNN accelerators (b).
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Fig. 4: Latency vs area design-space of the 2D-Conv 
ST-based accelerator for CONFIG=8x (b) and 4x (c).

Fig. 3: HLS flow and architecture of ST-based
accelerators.

Tab. 1. Reconfigurable multipliers vs the baseline non-
reconfigurable 16-bit Booth multiplier (at 1-ns target Tck).


