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Novel contributions

 The rapid growth of deep learning has also triggered a
growing interest in the design of specialized hardware
accelerators to support it. This specialized hardware
targets one of two categories — either operating in
datacenters or on mobile devices at the network edge.
While energy efficiency is important in both cases, the
need is extremely stringent in the latter class of
applications due to limited battery life.

« The same applies to sensors, which should efficiently
convey information to processing engines while

* Production of IMC CMOS SRAM arrays for in-
memory maximum value computation.

 Development of an HDC algorithm in Python for the
classification of images derived from a DVS sensor.

* Design of a hardware accelerator executing the HDC
algorithm validated on neuromorphic (i.e. DVS
generated) MNIST, targeting Xilinx FPGAs.
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Addressed research questions/problems

* ML tasks are energy-hungry ones. To improve efficiency one can take inspiration from
the brain and adopting a “neuromorphic” approach for both sensing and computation: In-
Memory Computing (IMC), embedding the computation where the information is stored;
Dynamic Vision Sensors (DVSs), emulating the human eye; Spiking Neural Networks AND DYN

(SNNS?’ emU|ating the hu.ma.n braip fun?tioning; Hyper Dimensional Compu“ng (HDC)’ (3)Three different IMC SRAM cells for in-memory computation of maximum value.
emulating the human brain dimensionality.
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« AND computation capabilities have been added to a standard CAM array. The circuit has
been characterized at physical level in Cadence Virtuoso, measuring energy and latency
of each memory operation. : | |

* The HDC circuit has been ported to many
FPGA families, measuring power
consumption and critical path for different
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* Investigations of SNN and GNN algorithms and circuits for DVS-based application in
p— ) contexts in which minimum latency and energy consumptions are needed.
ol ;,,\ ;;«;, €y * Development of an SNN accelerator for smart drones in collaboration with TU Delft
(abroad period), with professors Charlotte Frenkel and Guido De Croon.
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