

XXXVI Cycle

Resource Allocation in vRANs Somreeta Pramanik Supervisor: Prof. Carla Fabiana Chiasserini

Research context and motivation

Requirements of beyond 5G and 6G wireless communications demand to support

 \rightarrow service heterogeneity,

WHAT YOU ARE, TAKES YOU FAR

- \rightarrow coordination of multi-connectivity technologies,
- \rightarrow on-demand service deployment.
- Virtualised Radio Access Networks RAN (vRAN)- key technology enabling such a transformation using the concepts of virtualization, flexibility, and intelligence.
- Network slicing enables diversified services to be accommodated by isolated slices in vRANs.
- Virtualized baseband functions can instead, be run on commodity server hardware, usually at the edge.
- Advantages: → Cost-effectively scales up or *down* computing resources with demand

Fig. 1. Disaggregation Functional Split RAN **RU:** Radio Unit, DU: Distributed Unit, CU: Centralized Unit

4G or 5G Core

Novel contributions

- Regression model- predicts CPU utilization of virtual eNB with number of served users.
- Every additional UE is expected to entail about 4.1% of increase in CPU usage at the eNB.

- → Infuses RAN with capacity for *application intelligence* to significantly improve *service* quality and reliability.
- Challenges:
 - \rightarrow limited resource availability at the edge
 - \rightarrow competition for resources between user and network services
 - \rightarrow complex dependencies between data processed by each service
 - \rightarrow heterogeneous, stringent KPIs.
 - → maintain satisfactory user experience, high profit for service providers in a dynamic environment

Addressed research questions/problems

- Substantial cost savings- Dynamically adapting allocation of resources to the temporal variations of demand across vRANs.
- When to scale, how much to scale?
 - \rightarrow Hands-on understanding of the behavior of vRANs and the relation between radio and computing/memory resources
- Design of automated and efficient resource orchestration framework at the edge.
 - → VERA (Virtualized Edge for Radio and user Applications), a novel RL framework for joint allocation of computing and radio resources across user applications and

	Docation PU Deficit	Livecast actions	VEF contro	RA oller	vRAN actions	Service Ma Orchest	anagement & ration (SMO)
CPU scheduler	Livec contro docker Video	ast oller ↓ transcode server	Perform metri	iance cs vi	O-RAM	N RICs	Edge Computing Platform Other Apps
VCPU 2.	Ir D	nput video			 RLC MAC		Ö

Fig. 4. Structure of VERA framework

- Pre-trained model of VERA RL agents in the test-bed for different available RBs and CPU
- Similarity between test-bed and numerical results validates VERA performance in real-time & demonstrates the effectiveness of our solution in a real-world environment.

Predicted

CPU [%]

55.55

57.71

61.19

Adopted methodologies

- srsRAN-based experimental test-bed with 4 user equipment and an edge host.
- Performance profiling of the virtual Radio Point of Access (RPA) in terms of processing, memory and throughput.
- Prediction of the system behavior

Fig. 5. Snapshot of our test-bed

Implemented VERA in the testbed, ffserver (to emulate a livecast video service), and mpv (livecast video client deployed at each UE video player).

- vRAN
- \rightarrow Pareto analysis for fair and efficient decision making.
- \rightarrow Proof-of-concept through a containerised edge and an srsRAN-based testbed.

Fig. 2. Virtualized livecast and vRAN at the Design of optimal RAN slicing control strategy, edge which tends to maximise the expected long-term slice profit when resources are scarce while guaranteeing the QoS objectives for the slices, as well as slice isolation.

- \rightarrow Relationship between resource efficiency and profit maximization
- → Maximization of net social welfare and slice providers profit are two consistent objectives when resources are scarce.

Submitted and published works

- Characterizing the Computational and Memory Requirements of Virtual RANs, Somreeta Pramanik, Adlen Ksentini, Carla Fabiana Chiasserini, 17th Wireless On-demand Network systems and Services Conference (WONS) 2022
- VERA: Resource Orchestration for Virtualized Services at the Edge, Sharda Tripathi, Corrado Puligheddu, Somreeta Pramanik, Andres Garcia-Saavedra, Carla Fabiana Chiasserini, International Conference on Communications (ICC) 2022.
- Fair and Scalable Orchestration of Network and Compute Resources for Virtual Edge Services, Sharda Tripathi, Corrado Puligheddu, Somreeta Pramanik, Andres Garcia-Saavedra, Carla Fabiana Chiasserini, submitted to IEEE Transactions on Mobile Computing (TMC), 2022

POLITECNICO

DI TORINO

Fig. 6. VERA IMPLEMENTATION

VERA's learning agents receive realcontext information and the time reward signal directly from the vRAN, the livecast service, and the edge computing platform.

Work in progress

- Optimal RAN slicing control strategy
 - \rightarrow tends to maximise the expected long-term profit for service providers when resources are scarce while guaranteeing the QoS objectives for the slices, as well as slice isolation.

List of attended classes

- 01UJBRV- Adversarial training of neural networks (3/6/2021, credits:3)
- 01DTPRV- Connected Vehicles (23/6/2022, credits:4) •
- 02SFURV- Programmazione scientifica avanzata in matlab (25/5/2021, credits:6)
- 02QUBRS- Statistical data processing (4/2/2021, credits:4) •
- 01UNWRV- Intercultural & interpersonal management(22/6/2022, credits:1)
- Summer School- Complex networks and telecommunications: Towards 6G (5/7/2021, • credits:5)
- Summer School-Machine Learning, Sustainable Edge Computing and Networking (11/7/2022, credits:5)

Electrical, Electronics and

Communications Engineering