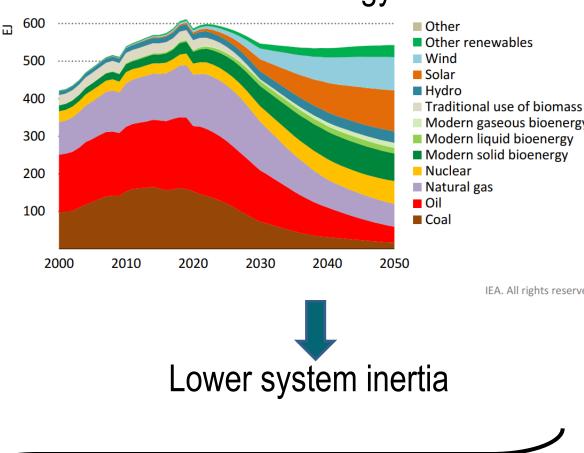


XXXVI Cycle

Next Generation Inverters for Energy Production with Virtual Synchronous Machine Features for Grid Services and Grid Support Vincenzo Mallemaci Supervisors: Prof. Radu Bojoi, Prof. Enrico Carpaneto


Research context and motivation

• Future decommissioning of thermoelectric • power plants (especially coal-based)

generators number

Widespread penetration of power electronic interfaced renewable energy sources

Adopted methodologies

Theoretical study

• Small-Signal Analysis

Simulations

• Continuous-time \Rightarrow Laplace • Discrete-time \Rightarrow C-script

Experimental Validation

- dSPACE Platform
- 3x15 kVA Inverters
- 15/90 kW dc Sources
- 50 kVA Grid Emulator

Novel contributions

Dead-Time Effect on Two-Level Voltage Source Virtual Synchronous Machines \bullet

Dead-time compensation is needed to match the theoretical harmonic and unbalance sink capability of voltage source VSMs

Voltage Unbalance

Fifth Harmonic Distortion

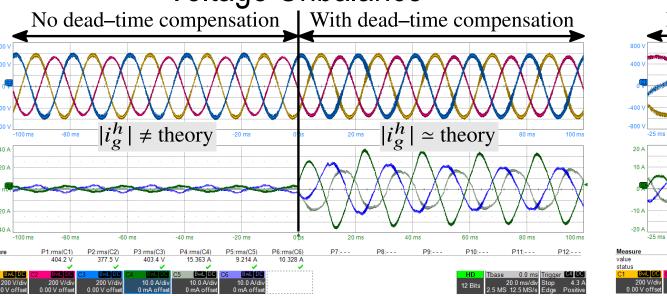
Decrease of the total power system inertia

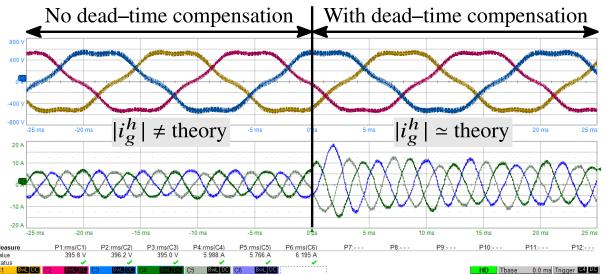
Grid frequency and voltage stability will be compromised

Addressed research questions/problems

According to recent grid codes, renewable power plants will be required to provide ancillary services

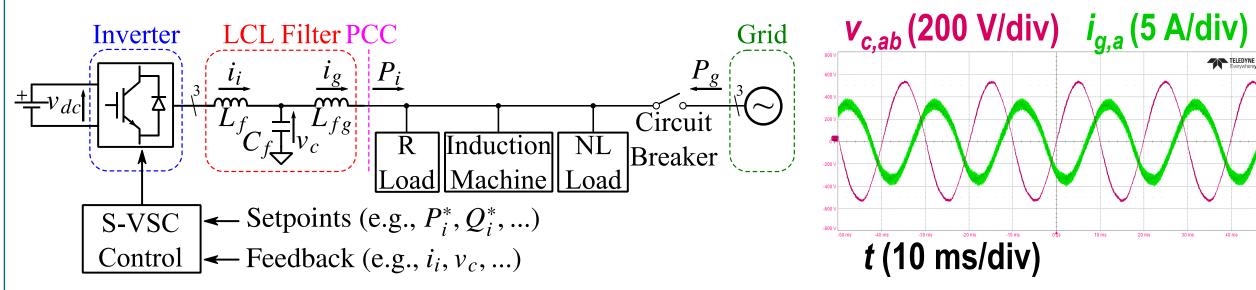
- Virtual Synchronous Machines (VSMs): grid-tied inverters can behave as conventional synchronous machines to support the grid by providing:
- Inertial Behavior
- Frequency/Active Power Regulation
- Voltage/Reactive Power Regulation
- Harmonic/Unbalance Sink Capability
- Support during faults
- Black start/Island Capability


Goal

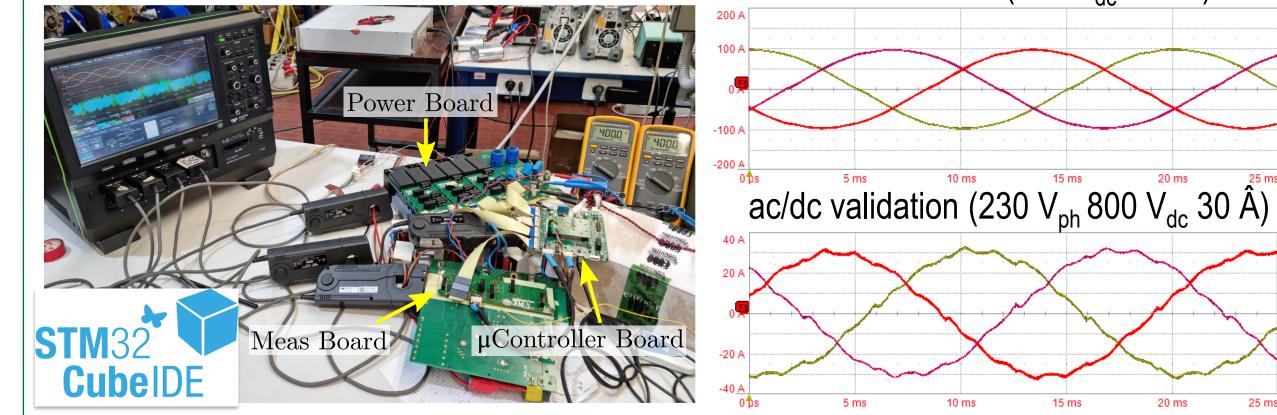

Propose and investigate advanced control solutions for grid-connected inverters for the fulfillment of the next generation grid codes for the integration of renewable energy sources

VSMs in	VSMs + battery	Stability analysis of parallel	VSMs behavior under
microgrids	chargers	VSMs/multi-VSMs systems	non-ideal conditions

Starting Point


- Research of **VSM solutions** in the literature and **implementation** of
- **Simplified Virtual Synchronous** Compensator (S-VSC): VSM

Extension of the original S-VSC algorithm to grid-forming converters

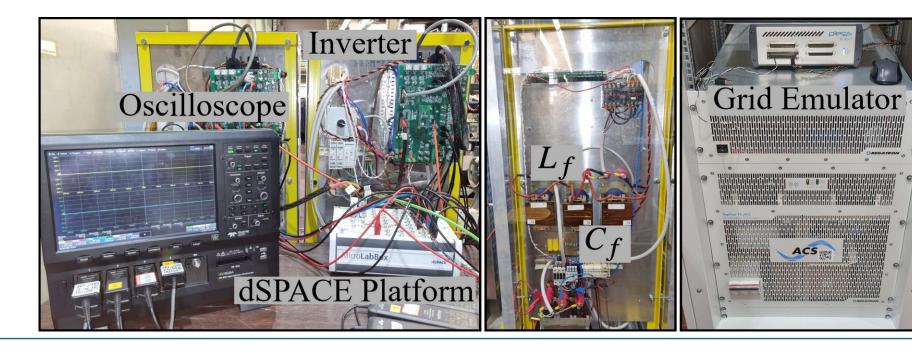

Islanding capability and microgrid control preserving the virtual compensator performance

Evaluate the possibility to make battery chargers able to provide ancillary services

Bidirectional battery chargers can provide ancillary services for V2G applications

50 kW SiC 3-level Active Front End

dc/ac validation (800 V_{dc} 100 Å)



several existing VSMs

Experimental

setup

developed at the Politecnico di Torino

Submitted and published works

- V. Mallemaci, F. Mandrile, E. Carpaneto and R. Bojoi, "Dead-Time Effect on Two-Level Voltage Source Virtual Synchronous Machines", 2022 IEEE Energy Conversion Congress and Exposition (ECCE), In Press.
- V. Mallemaci, F. Mandrile, S. Rubino, A. Mazza, E. Carpaneto, and R. Bojoi, "A comprehensive comparison of Virtual Synchronous Generators with focus on virtual inertia and frequency regulation," Electric Power Systems Research, vol. 201, p. 107516, Dec. 2021.
- Mandrile, F.; Cittanti, D.; Mallemaci, V.; Bojoi, R. Electric Vehicle Ultra-Fast Battery Chargers: A Boost for Power System Stability? World Electr. Veh. J.2021,12, 16.
- F. Reissner, V. Mallemaci, F. Mandrile, R. Bojoi and G. Weiss, "Virtual Friction: Experimental Validation in a Microgrid of 3 Virtual Synchronous Machines," 2022 IEEE 23rd Workshop on Control and Modeling for Power Electronics (COMPEL), 2022, pp. 1-6.
- F. Mandrile, V. Mallemaci, E. Carpaneto and R. Bojoi, "A Lead-Lag Filter for Virtual Synchronous Machines with Improved Electromechanical Damping", 2021 IEEE Energy Conversion Congress and Exposition (ECCE), Vancouver, BC, Canada, 2021, pp. 583-589.
- V. Mallemaci, E. Carpaneto and R. Bojoi, "Grid-Forming Inverter with Simplified Virtual Synchronous Compensator Providing Grid Services and Grid Support," 2021 24th International Conference on Electrical Machines and Systems (ICEMS), Gyeongju, Korea, Republic of, 2021, pp. 2323-2328.
- D. Cittanti, V. Mallemaci, F. Mandrile, S. Rubino, R. Bojoi and A. Boglietti, "PWM-Induced Losses in Electrical Machines: An ImpedanceBased Estimation Method," 2021 24th International Conference on Electrical Machines and Systems (ICEMS), Gyeongju, Korea, Republic of, 2021, pp. 548-553.

Future work

- Operation and stability of parallel converters using S-VSC algorithm and operated in grid-mode or islanded in a microgrid configuration
- **Integration** of the S-VSC algorithm into the Active Front End prototype
- Evaluation of novel strategies to limit the inverter current under symmetrical and asymmetrical **faults**

List of attended classes

- 02LCPRV Experimental modeling (9/2/2021, 7 credits)
- 02ITTRV Generatori e impianti fotovoltaici (19/4/2021, 5 credits)
- 01LEVRV Power system economics (14/7/2021, 3 credits)
- 02SFURV Programmazione scientifica avanzata in MATLAB (27/4/2021, 6 credits)
- 01TSLRO Soluzioni innovative per veicoli elettrici e/o ibridi (19/5/2021, 3 credits)
- 01QORRV Writing Scientific Papers in English (18/2/2021, 3 credits)
- European PhD School: Power Electronics, Electrical Machines, Energy Control and Power Systems 2021 (12/7/2021, 30 hours)
- European PhD School: Power Electronics, Electrical Machines, Energy Control and Power Systems 2022 (23/5/2022, 40 hours)
- WinGrid PhD School 2022 (4/7/2022, 24 hours)

Electrical, Electronics and

Communications Engineering