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Research context and motivation Novel contributions

« Convolutional neural networks (CNN) are widely used for solving problems like image
classification, object detection, and semantic segmentation. * FPGA Accelerator Design for segmentation: able to support 2D dynamic tiling, 3D
 The deployment of these networks on resource-limited hardware (HW), such as FPGAs , is unrolling, dilated convolutions, and bilinear upsampling. Achieving 90% DSP utilization,
challenging due to high memory requirements and energy consumption. 183.3 GOPS throughput, and DRAM accesses reduction by a factor of 2.33x.
* Modern CNNs models are able to achieve high accuracy. « Genetic Algorithm-based Channel Pruning: non-dominated sorting genetic algorithm
* HW designs can achieve high performance. (NSGA-II) is used to determine Pareto optimal pruning configurations, obtaining 2.75x
* Hardware and Software have to cooperate in order to design faster, stronger and accurate reduction in the number of operations with minimal degradation in prediction quality for
CNN systems. DeepLabV3+ model over Cityscapes dataset.

« Hardware-Aware Pruning: an analytical HW model of the accelerator is used to steer a
latency-driven GA search and outperform pruning configurations based on proxy metrics.

Addressed researCh queStlonSI prOblemS The latency-driven GA search provides a performance improvement of 2.44x, with
minimal degradation in the prediction quality for DeepLabV3+ model over Cityscapes
* Deployment on FPGA of Semantic Segmentation Models is challenging because of dataset.
model complexity. Model compression techniques such as pruning and quantization are | |+ End-To-End Winograd-based convolution: Winograd algorithm with complex number
therefore needed. However, a reduction in the number of operations does not always system and quantization are considered at training time.
cause a reduction in the inference time. » Fault-Aware training: a fault injection module able to model hardware faults (bitflip, stuck
» Convolution represents the core of CNNs, Winograd transformation allows to turn at) is introduced at training time, increasing the robustness of the model.

convolution into a simpler element-wise matrix multiplication, reducing inference time on
HW accelerators. However, when Winograd is used with quantization in CNN models,
the resulting accuracy is heavily degradeted because of numerical instability.

» Hardware faults, such as bit-flips and stuck at error, can affect the prediction quality of Adopted methOdOlOgieS

the model.
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« Stride-2 is supported by decomposing
filters and activations in 4 tiles
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 Analysis and comparison of robustness of Systolic and dataflow architectures (FINN-
Submitted and published works based). o o | |
Mori Pierpaolo, Vemparala M. R., Fasfous N., Passerone C., “Accelerating and Pruning CNNs for Semantic Segmentation on * New quantization scheme for bit-serial accelerators: trainable scallng factor for each bit of

FPGA”, Proceedings of the 59th ACM/IEEE Design Automation Conference, 2022, pp.145-150 the N-bit value.
Valpreda E. , Mori P. , Fasfous N. , Vemparala M. , et al. , “HW-Flow-Fusion: Inter-Layer Scheduling for Convolutional Neural o : )
Network Accelerators with Dataflow Architectures”, MDPI Electronics, vol. 11, no. 18, 2022, pp. Robustness of Wmograd based accelerators.
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