

Visual Navigation: from frame-based cameras to neuromorphic sensing **Chiara Boretti** Supervisors: Prof. Gianluca Setti, Prof. Marcello Chiaberge

Research context and motivation

A robotic platform can be defined autonomous if it is able, without human intervention, to effectively navigate in known or unknown environments, to build a map of the scene and to localize itself in it. Service robotics is a growing research area whose main goal is to develop autonomous robots capable of helping people in doing complex, dangerous and fatiguing tasks to finally improve the quality of their every-day life.

Novel contributions

- Development of a control pipeline based on bio-inspired visual cues, time-to-transit (tau), to navigate in unknown environments. The entire algorithm has been tested on a **real platform** proving the effectiveness of the control strategy.
- Development of a detection pipeline in which streams of events, organized as Time-Ordered Recent Events (TORE) volumes, are given as input to a standard object detection neural network. This type of input allows the detection of fast moving objects (pedestrians) both in day and in night light conditions.

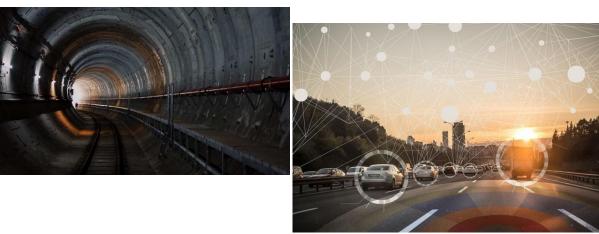
Adopted methodologies

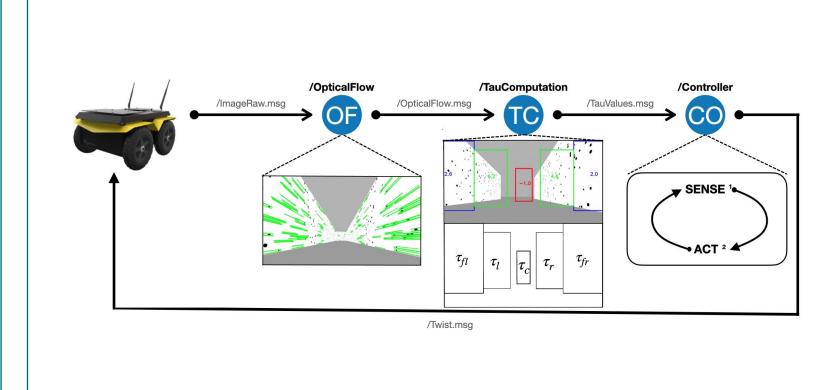
From keypoints, tracked in subsequent frames, and thanks to a Sense-Act cycle, tau values are correctly computed. Then the control strategies (tau balancing and the single wall strategy) which rely on these bio-inspired visual cues are applied to navigate.

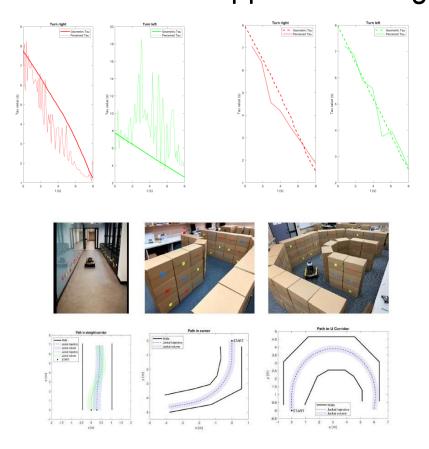
Search & Rescue

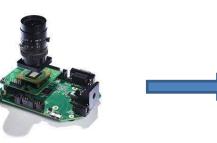
Neuromorphic approaches are a huge source of inspiration for developing navigation strategies which are faster, more lighweight and more efficient.

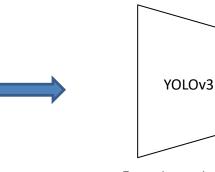
Sight is one of the main abilities that animals and humans use to **perceive the environment**. In robotics, **visual information** can be acquired with frame-based cameras and then processed to extract bio-inspired visual cues, or by vision sensors in which the acquisition process is neuromorphic.


Addressed research questions/problems

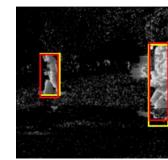

In robotics, autonomous navigation is a very challenging aspect and there are still open • problems to be addressed.


Crowded environment


Different lighting conditions



The object detection pipeline is composed of three main steps: collect the events in TORE volumes, provide the volumes to YOLOv3 neural network, evaluate the results by using different mAP metrics.



ORE volume

Event-based camera

Pruned neural networ

Output

Dataset	mAP@50	mAP@75	mAP[0.5:0.05:0.95]
Complete 1 Megapixel Dataset (cars + pedestrians)	48.3 %	30.9 %	28.6 %
Reduced 1 Megapixel Dataset (pedestrians)	53.3 %	14.7 %	23.1 %

Future work

- Improve the robustness of the control algorithm based on frame-based cameras and ullettime-to-transit values.
- **Prune the object detection neural network** to make the entire pipeline more efficient and a suitable candidate to be **deployed on constrained hardware**. Exploit the **pedestrian detection results** to develop a **navigation algorithm** which leverage event-based inputs. The algorithm should operate in different lighting conditions and the goal should be to follow a person and/or to avoid moving **obstacles** in a fast and effective way.
- The introduction of event-based cameras, novel sensors whose working principle is bioinspired, could help solving some of the still open problems. In these vision sensors each **pixel** works in logarithmic scale and it **indipendently sends an event** every time it detects a brightness change in the scene.
- The **advantages** are **multiple**:
- High dynamic range (120dB)
- Small time resolution (microsecond)
- Very fast motion detection
- No redundant information
- Reduction of the power consumption

Collaborations

- Alba Robot: development of an algorithm to perform the entrance and the exit from an elevator with an autonomous wheelchair.
- Intesa San Paolo Innovation Centre: development of a navigation strategy for an air sanitizing autonomous robot that should operate in the meeting rooms of Grattacielo San Paolo.

Submitted and published works

Boretti, C., Bich, P., Zhang Y. and Baillieul, J., "Visual Navigation Using Sparse Optical Flow and Time-to-Transit", in IEEE International Conference on Robotics and Automation (ICRA), Philadelphia, May 23-27, 2022, pp. 9397-9403.

List of attended classes

- 01QTEIU Data mining concepts and algorithms (03/02/2022, 4 credits)
- 02QUBRS Statistical data processing (04/02/2022, 4 credits)
- 01UJUIU Human-Ai Interaction (09/02/2022, 4 credits)
- 01UJBRV Adversarial training of neural networks (06/06/2022, 3 credits)
- 01SCSIU Machine learning for pattern recognition (22/07/2022, 4 credits)
- 01DNMIU Optimized execution of neural networks at the edge (02/08/2022, 5 credits)
- 01SYBRV Research integrity (06/12/2021, 1 credit)
- 01UNXRV Thinking out of the box (17/12/2021, 1 credit)
- 01UNYRV Personal branding (20/12/2021, 1 credit)
- 01RISRV Public speaking (21/12/2021, 1credit)
- 01SWQRV Responsible research and innovation, the impact on social challenges (24/12/2022, 1 credit)
- 01SHMRV Entrepreneurial Finance (28/02/2022, 3 credit)
- 01UNXRV The new Internet Society: entering the black-box of digital innovations (28/02/2022, credits)
- 01QORRV Writing Scientific Papers in English (24/03/2022, credits)

Electrical, Electronics and

Communications Engineering