

Design of a MEMS-based electrodynamic loudspeaker **Gabriele Gatani** Supervisor: Prof. Carlo Ricciardi Supervisor @BoschSensortec Italy: Guido De Sandre

Research context and motivation

• MEMS market size is expected to be worth USD 18.88 billion by 2022, at a CAGR of 9.8% between 2017 and 2022.

• MEMS-based audio product are expected to grow consistently next years, with MEMS microspeaker industry forecasted to worth almost \$11B itself.

[1]

Novel contributions

• Model and simulations made starting from the gas theory in a close chamber, considering only adiabatic expansions.

Addressed research questions/problems

• MEMS-based loudspeaker are classified based on their transduction mechanism.

• The lumped element modeling is the fastest way to extrapolate some preliminary figures of merit from the device.

The frequency behavior was evaluated modeling the structure as a second order oscillator, neglecting the damping at first.

16 mm² active area

• Theoretically using a module design with multiple 1 mm² active squares, it'd possible to uncouple the area from the total mass, resulting in a larger resonance frequency $\omega_{0,1mm}$ given by the area of a single module, but with the same displacement $x_{0.16mm}$ given by the correspondent 16 mm² area. Also the total power is reduced over the linear frequency range.

Module design (16 x 1 mm²):

• The most important parameters to consider in a preliminary analysis are schematized here.

Future work

No Leakad

- Future work will focus on static FEM analysis using one or multiple CAD softwares, in order to describe the structure as a whole, looking at the force generated by the magnetic circuit and the relative displacement generated in the membrane.
- A careful review of the most prominent out-of-plane springs designs will also be conducted in order to guarentee the required standard from a mechanical point of view. It may be necessary to review different technologies too in case the electrodynamic will not prove able to reach the objectives set.
- Plan first PoC to characterize the response of a membrane in a magnetic circuit and possibly modify the design accordingly.

References	List of attended classes
 Microelectromechanical Systems Market Size, Share & Trends Analysis Report By Application (Automotive, Consumer Electronics, Industrial, Healthcare), By Region (NA, Europe, APAC, MEA, LA), And Segment Forecasts, 2018 – 2024. Report ID: 978-1-68038-769-8 Microphones, Microspeakers and Audio Solutions Market and Technology Trends 2019 report, Yole Développement, 2019 H. Wang, Y. Ma, Q. Zheng, K. Cao, Y. Lu, and H. Xie, "Review of recent development of MEMS speakers," Micromachines, vol. 12, no. 10. MDPI, Oct. 01, 2021. doi: 10.3390/mi12101257. M. C. Cheng, W. S. Huang, and S. R. S. Huang, "A silicon microspeaker for hearing instruments," Journal of Micromechanics and Microengineering, vol. 14, no. 7, pp. 859–866, Jul. 2004, doi: 10.1088/0960-1317/14/7/004. 	 03MLIKG – Corso seminariale del dottorato di ricerca in fisica (20h) 01LDVRU – Magnetismo nei materiali e misure magnetiche (13/7/2022, 20h) 01RHCRR – Principi, materiali e applicazioni della robotica nella biomedicine (30/5/2022, 20h) 02SFURV – Programmazione scientifica avanzata in matlab (26/5/2022, 30h) 01UNRRV – Entrepreneurship and start-up creation / I4C (4/7/2022, 40h)

Communications Engineering