

XXXVII Cycle

Torque control of multiphase synchronous machine Luisa TOLOSANO Supervisor: Prof. Radu BOJOI

Research context and motivation

Although the **three-phase** machine is the natural choice for industrial and traction eDrives, it has some disadvantages:

- high power levels lead to high phase currents if the available voltage is limited
- fault events cause the inoperability of the machine

The **multiphase machine** may replace the three phase solution in particular applications:

- the **current per phase can be reduced** to manage high power loads
- the system's reliability increases thanks to the redundant structure

The **multi three phase** machines have recently gained **more interest** thanks to:

- the use of independent three-phase inverters to exploit the three phase solutions
- modularity and easiness to control

Concerning the **multiphase synchronous machine**, a **lack in the literature** is still present both in the modeling approach and in the definition of an effective torque control strategy Two **research contracts** are ongoing:

- Development of a machine control architecture and of a torque control solution for automotive application with **Polestar – Volvo Cars** company
- Development of a torque control solution with **Punch Torino** company

ID references

M-G-M operation

 $I^* \downarrow \omega_m \downarrow V_{ds}, V_{qs}$

Maps generation

MTPA-MTPV

Parameters ID

(d,q) Flux Maps

 $\lambda_d(I_d, I_q) \mid \lambda_q(I_d, I_q)$

 I^*, f^*_{slip}

 v_{ds}, v_{qs}

 $\lambda_s(I, f_{slip})$

G. Sala, M. Mengoni, G. Rizzoli, M. Degano, L. Zarri and A. Tani, "Impact of Star Connection Layouts on the Control of Multiphase Induction Motor Drives Under Open-Phase Fault," in IEEE Transactions on Power *Electronics*, vol. 36, no. 4, pp. 3717-3726, April 2021

Addressed research questions/problems

The main topic addressed in the research are:

- Development and testing of a torque control for traction three-phase AC drive using a new approach entitled Flux Polar Control (FPC) [1] (patent pending)
- Design of an experimental identification procedure of the electric parameters of the induction machine [2]
- State-of-the-art of multiphase machine modeling and torque control techniques

Novel contributions

Flux Polar Control (FPC) of AC Motor

- **Direct control** of machine **flux vector** in its polar components: the **amplitude** λ and the **phase** δ (machine **load angle**)
- **Torque map** definition using flux λ and load angle δ
- The inner regulators are decoupled (model equation in stator flux-oriented reference frame)
- The tuning of the regulators does not depend on the of the machine type and the operating point, it is only related to the selected switching frequency
- No additional regulator is required to perform the **MTPV** operation with flux weakening
- FPC is a plug-and-play torque control strategy

Experimental Flux Mapping of Induction Machine for Traction

Adopted methodologies

Future work

The Ph.D. activities will concern the modeling and the development of torque control strategies for multi three-phase synchronous motors. The machine under study is a twelve phase PMSM using a configuration with four three-phase winding sets.

The main topics that will be investigated are:

- New procedure to map the steady-state dq flux maps of the induction machine
- All the equivalent circuit parameters can be obtained exploiting the main control loci
- A proper characterization of the current-frequency behavior of the electric circuit parameters in the operative ranges is performed
- The flux maps $\lambda_d(i_d, i_q)$ and $\lambda_q(i_d, i_q)$ are in polar form

Submitted and published papers

- S. Rubino, F. Mandrile, L. Tolosano, E. Armando and R. Bojoi, "Direct Flux and Load Angle Vector Control of Permanent Magnet Synchronous Motors", 2021 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 4668-4675. Second Prize Paper Award of Industrial Drives Committee of Industry Application Society 2022
- 2. L. Tolosano, E. Armando, S. Rubino, F. Mandrile and R. Bojoi "Experimental Identification of Induction Machine Flux Maps for Traction Applications" 2022 IEEE Energy Conversion Congress and Exposition (ECCE)

- Development of multi three-phase SM models: multiphase synchronous machine models will be devised to check the effectiveness of the torque control techniques
 - **FPC in multi-phase configuration**: both VSD and MS approaches will be adopted to check the effectiveness of this torque control strategy for multi three-phase motors
- Development of a decoupling algorithm for multi three-phase SM: each winding set will have to be independent of the others to enable the decoupled control of the motor

List of attended classes

- 02LWHRV Communication (01/12/2021, 1 CFU)
- 01SHMRV Entrepreneurial Finance (01/12/2021, 1 CFU)
- 01UNVRV Navigating the hiring process: CV, tests, interview (05/11/2021, 1 CFU)
- 01RGBRV Optimization methods for engineering problems (07/06/2022, 6 CFU)
- 02SFURV Programmazione scientifica avanzata in matlab (21/04/2022, 6 CFU)
- 08IXTRV Project management (24/11/2021, 1 CFU)
- 01RISRV Public speaking (01/12/2021, 1CFU)
- 01SYBRV Research integrity (10/11/2021, 1 CFU)
- 01SWQRV Responsible research and innovation, the impact on social challenges (12/11/2021, 1 CFU)
- 01TSLRO Soluzioni innovative per veicoli elettrici e/o ibridi (31/03/2022, 3 CFU)
- 02RHORV The new Internet Society: entering the black-box of digital innovate (01/12/2021, 1 CFU)
- 01QORRV Writing Scientific Papers in English (05/05/2022, 3 CFU)
- European Ph.D. School Gaeta 2022 (23-27/05/2022, 30 h)

Electrical, Electronics and

Communications Engineering