

VCSELs for gas sensing applications: guantum-corrected drift-diffusion Valerio Torrelli Supervisor: Prof. Francesco Bertazzi

Research context and motivation

Novel contributions

12		
	JV characteristic	- 7000
10 -	and voltage drop	6000

2 - Beyond carrier-transport: electro-opto-thermal analysis of AlGaAs VCSELs

Successful extension of the Schrödinger-corrected drift diffusion into an electro-optothermal simulation, showing a good agreement with the capture times model with reduced au

Original capture time values for electrons and holes: $\tau_n = 1 \cdot 10^{-11}$ s, $\tau_p = 5 \cdot 10^{-12}$ s

Adopted methodologies

Poisson-Schrödinger-drift-diffusion (PSDD)

In a standard PDD step, **heterostructures** are accounted for by using as energy reference for the conduction and valence band edges the so called flat band alignments, ΔE_c^{FB} , ΔE_v^{FB} , yielding a non-physical discontinuous carrier density profile.

Addressed research questions/problems

Numerical simulations of VCSELs

1 - Schrödinger-corrected carrier transport analysis in antimonide TJ-VCSEL

QWs while simultaneously blo	cking backward hole	(AlGaSb – InAs – GalnSb – InAs - AlGaSb)	
propagation	Buried tunnel junction (p^+ GaSb / n^+ InAsSb):		
Quantum effects ⇒ not suitable for a Poisson-drift- diffusion (PDD) approach!	 radial confinement o minimizing the <i>p</i>-dop 	f the current (no oxide due to technological problems) bed portion of the device thanks to the band-to-band onverting electrons into holes \implies higher conductivity with	

2 - Beyond carrier-transport: electro-opto-thermal analysis of AlGaAs VCSELs

To simulate all of the physical properties of a VCSEL, one should extend the Schrödingercorrected transport model, including:

This was applied to an AIGaAs TJ-VCSEL since comparisons with our in-house simulator, D1ANA (relying on a different and established quantum-corrected model based on capture/escape recombination rates), can be

DD equations corrected by the Schrödinger equation for the heterostructures treatment where quantum phenomena are relevant

Rate equation for the stimulated power

Solution of the **heat equation** at each voltage step to tune the T-dependent parameters

Submitted and published works

Valerio Torrelli, et al., 22nd International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD 2022) (online, 2022), Modeling carrier transport in mid-infrared VCSELs with type-II superlattices and tunnel junctions

POLITECNICO DI LORINO

Future work

- Moving on to fully 3D simulations by exploiting our in-house solver VENUS
- Implementing the analysis of multi-tunnel-junction VCSELs (MTJ-VCSELs), interesting from the point of view of applications given the possibility to obtain a higher optical power without exploiting VCSEL arrays
- Collaboration with the company TRUMPF PHOTONICS to optimize and improve the design of real devices. By exchanging experimental data, it will be possible to properly tune our simulators and to validate their results

List of attended classes

- 01DOJRV Computational (opto) electronics: a journey through device-level models (29/07/2022, 3.6)
- 01DOBRV Mathematical-physical theory of electromagnetism (06/06/2022, 3)
- 01MLOKG Meccanica quantistica dei sistemi a molti corpi (05/05/2022, 6)
- 01SFVRV Metamaterials: Theory and multiphysics applications (08/04/2022, 4)
- 02SFURV Programmazione scientifica avanzata in matlab (21/04/2022, 6)
- 01DNYRV Semiconductor light sources for engineers (12/09/2022, 4)
- 01TSGKG The Monte Carlo method (06/05/2022, 6)

Electrical, Electronics and

Communications Engineering