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Novel contributions

Addressed research questions/problems
Memory management
Motivation
• FPGA memory hierarchy

 Large slow off-chip DRAM
 Small fast on-chip BRAMs/registers

State-of-the-art solution
• Manual scratchpad-like management
• Load-compute-store architecture for memory-bound algorithms

 Efficient
 Not automated
 Not always applicable (irregular or data-dependent access patterns)

Research context and motivation
High-level synthesis
 C/C++ to register-transfer level
 Natural trend toward higher abstraction levels

 Complex systems
 Verification
 Time-to-market
 Design space exploration
 ...

Open issues
 Sub-optimal Quality of Results (w.r.t. manually optimized RTL)
 Significant manual optimization effort
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Future work
Multiple clock domains for HLS
Motivation
 Low maximum clock frequency (w.r.t. RTL)

 Single global clock (worst-case)
 Lack of reliable timing predictions during HLS synthesis

 Dataflow designs inherently compatible with multiple clock domains
 Separate tasks with FIFOs at the boundaries

Implementation
 One clock per dataflow task
 Clock domain crossing through dual-clock FIFOs
 Data-driven control (blocking read/write on FIFOs)

Applications
 Task frequency maximizing

 Clock frequency no longer limited by the worst case of slowest task
 Each task running at the highest possible clock frequency
 Example – HLS cache: AXI adapter limited at 333 MHz

 mem_if clock @ 333 MHz
 core and compute clock @ maximum frequency

 Throughput matching
 Adjust frequency to match producer rate with consumer rate
 Example – Producer produces 1 token, and consumer consumes 2 tokens per clock cycle

 Improve performance by running producer at double frequency
 Save area/power by running consumer at half frequency

 Multi-pumping
 Reuse a resource N times within a system clock cycle (Tsys), by running it at Tsys/N
 Especially effective if combined with throughput matching

Adopted methodologies
Cache for HLS
Architecture
 Level 2: set of concurrent processes

 Protocol for cyclic dataflow network
 High throughput: one load/store

per clock cycle when hit
 Level 1: inlined

 Low latency
 Multi-port: single L2, multiple L1

 Unrolling
 Very high throughput: N loads per clock cycle when hit

Implementation
 C++ class with array-like interface and fully-configurable parameters

HLS cache LCS
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Fig. 6 – Performance of memory optimizations. Fig. 7 – Resource usage for 2D convolution with HLS 
cache.

Fig. 2 – Load-compute-store 
architecture.

Fig. 3 – Cache internal architecture. Fig. 4 – LCS-like cache 
architecture.

Fig. 5 – Hardware setup integrating the HLS cache.

Tab. 1 – Memory optimization approaches.

Fig. 8 – Example of a 
dataflow network.
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Fig. 1 – HLS Y-diagram.
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