
Improving Quality of Results
for HLS designs

Brignone Giovanni
Supervisor: Prof. Lavagno Luciano

Submitted and published works
• (Submitted) Brignone G., Jamal M. U., Lazarescu M. T., Lavagno L., “Array-specific dataflow caches for high-level synthesis of

memory-intensive algorithms on FPGAs”, IEEE Access

List of attended classes
• 01DNHRV – System level low power techniques for IoT (15/7/22, 20 h)
• 01DUCRV – Principles of digital image processing and technologies (22/7/22, 27 h)
• 01QTEIU – Data mining concepts and algorithms (3/2/22, 20 h)
• 01RGBRV – Optimization methods for engineering problems (7/6/22, 30 h)
• 01RISRV – Public speaking (25/11/21, 5 h)
• 01SHMRV – Entrepreneurial Finance (12/12/21, 5 h)
• 01SWPRV – Time management (24/11/21, 2 h)
• 01SWQRV – Responsible research and innovation, the impact on social challenges

(12/12/21, 5 h)
• 01SYBRV – Research integrity (12/12/21, 5 h)
• 01UJBRV – Adversarial training of neural networks (6/6/22, 15 h)
• 01UNVRV – Navigating the hiring process: CV, tests, interview (2/12/21, 2 h)
• 01UNXRV – Thinking out of the box (17/11/21, 1 h)
• 01UNYRV – Personal branding (18/11/21, 1 h)
• 02LWHRV – Communication (24/11/21, 5 h)
• 02RHORV – The new Internet Society: entering the black-box of digital innovations

(12/12/21, 6 h)
• 08IXTRV – Project management (11/11/21, 5 h)
• Machine Learning (Coursera), Andrew Ng (23/12/21, 20 h)

Novel contributions

Addressed research questions/problems
Memory management
Motivation
• FPGA memory hierarchy

 Large slow off-chip DRAM
 Small fast on-chip BRAMs/registers

State-of-the-art solution
• Manual scratchpad-like management
• Load-compute-store architecture for memory-bound algorithms

 Efficient
 Not automated
 Not always applicable (irregular or data-dependent access patterns)

Research context and motivation
High-level synthesis
 C/C++ to register-transfer level
 Natural trend toward higher abstraction levels

 Complex systems
 Verification
 Time-to-market
 Design space exploration
 ...

Open issues
 Sub-optimal Quality of Results (w.r.t. manually optimized RTL)
 Significant manual optimization effort

PhD program in

Electrical, Electronics and
Communications Engineering

XXXVII Cycle

Future work
Multiple clock domains for HLS
Motivation
 Low maximum clock frequency (w.r.t. RTL)

 Single global clock (worst-case)
 Lack of reliable timing predictions during HLS synthesis

 Dataflow designs inherently compatible with multiple clock domains
 Separate tasks with FIFOs at the boundaries

Implementation
 One clock per dataflow task
 Clock domain crossing through dual-clock FIFOs
 Data-driven control (blocking read/write on FIFOs)

Applications
 Task frequency maximizing

 Clock frequency no longer limited by the worst case of slowest task
 Each task running at the highest possible clock frequency
 Example – HLS cache: AXI adapter limited at 333 MHz

 mem_if clock @ 333 MHz
 core and compute clock @ maximum frequency

 Throughput matching
 Adjust frequency to match producer rate with consumer rate
 Example – Producer produces 1 token, and consumer consumes 2 tokens per clock cycle

 Improve performance by running producer at double frequency
 Save area/power by running consumer at half frequency

 Multi-pumping
 Reuse a resource N times within a system clock cycle (Tsys), by running it at Tsys/N
 Especially effective if combined with throughput matching

Adopted methodologies
Cache for HLS
Architecture
 Level 2: set of concurrent processes

 Protocol for cyclic dataflow network
 High throughput: one load/store

per clock cycle when hit
 Level 1: inlined

 Low latency
 Multi-port: single L2, multiple L1

 Unrolling
 Very high throughput: N loads per clock cycle when hit

Implementation
 C++ class with array-like interface and fully-configurable parameters

HLS cache LCS
Performance

speedup 101-102 102-103

Energy saving 101-102 102-103

Resources Buffers + logic Buffers

Integration Parameters
DSE

Algorithm
rewriting

Applicability
Run-time

spatial and
temporal
locality

Design-time
spatial and
temporal
locality

Fig. 6 – Performance of memory optimizations. Fig. 7 – Resource usage for 2D convolution with HLS
cache.

Fig. 2 – Load-compute-store
architecture.

Fig. 3 – Cache internal architecture. Fig. 4 – LCS-like cache
architecture.

Fig. 5 – Hardware setup integrating the HLS cache.

Tab. 1 – Memory optimization approaches.

Fig. 8 – Example of a
dataflow network.

System
Algo

RTL
Logic

Circuit

Behavior
domain

Structure
domain

Physical
domain

System
specification

Fig. 1 – HLS Y-diagram.

	Slide 1

