
Improving Quality of Results
for HLS designs

Brignone Giovanni
Supervisor: Prof. Lavagno Luciano

Submitted and published works
• (Submitted) Brignone G., Jamal M. U., Lazarescu M. T., Lavagno L., “Array-specific dataflow caches for high-level synthesis of

memory-intensive algorithms on FPGAs”, IEEE Access

List of attended classes
• 01DNHRV – System level low power techniques for IoT (15/7/22, 20 h)
• 01DUCRV – Principles of digital image processing and technologies (22/7/22, 27 h)
• 01QTEIU – Data mining concepts and algorithms (3/2/22, 20 h)
• 01RGBRV – Optimization methods for engineering problems (7/6/22, 30 h)
• 01RISRV – Public speaking (25/11/21, 5 h)
• 01SHMRV – Entrepreneurial Finance (12/12/21, 5 h)
• 01SWPRV – Time management (24/11/21, 2 h)
• 01SWQRV – Responsible research and innovation, the impact on social challenges

(12/12/21, 5 h)
• 01SYBRV – Research integrity (12/12/21, 5 h)
• 01UJBRV – Adversarial training of neural networks (6/6/22, 15 h)
• 01UNVRV – Navigating the hiring process: CV, tests, interview (2/12/21, 2 h)
• 01UNXRV – Thinking out of the box (17/11/21, 1 h)
• 01UNYRV – Personal branding (18/11/21, 1 h)
• 02LWHRV – Communication (24/11/21, 5 h)
• 02RHORV – The new Internet Society: entering the black-box of digital innovations

(12/12/21, 6 h)
• 08IXTRV – Project management (11/11/21, 5 h)
• Machine Learning (Coursera), Andrew Ng (23/12/21, 20 h)

Novel contributions

Addressed research questions/problems
Memory management
Motivation
• FPGA memory hierarchy

 Large slow off-chip DRAM
 Small fast on-chip BRAMs/registers

State-of-the-art solution
• Manual scratchpad-like management
• Load-compute-store architecture for memory-bound algorithms

 Efficient
 Not automated
 Not always applicable (irregular or data-dependent access patterns)

Research context and motivation
High-level synthesis
 C/C++ to register-transfer level
 Natural trend toward higher abstraction levels

 Complex systems
 Verification
 Time-to-market
 Design space exploration
 ...

Open issues
 Sub-optimal Quality of Results (w.r.t. manually optimized RTL)
 Significant manual optimization effort

PhD program in

Electrical, Electronics and
Communications Engineering

XXXVII Cycle

Future work
Multiple clock domains for HLS
Motivation
 Low maximum clock frequency (w.r.t. RTL)

 Single global clock (worst-case)
 Lack of reliable timing predictions during HLS synthesis

 Dataflow designs inherently compatible with multiple clock domains
 Separate tasks with FIFOs at the boundaries

Implementation
 One clock per dataflow task
 Clock domain crossing through dual-clock FIFOs
 Data-driven control (blocking read/write on FIFOs)

Applications
 Task frequency maximizing

 Clock frequency no longer limited by the worst case of slowest task
 Each task running at the highest possible clock frequency
 Example – HLS cache: AXI adapter limited at 333 MHz

 mem_if clock @ 333 MHz
 core and compute clock @ maximum frequency

 Throughput matching
 Adjust frequency to match producer rate with consumer rate
 Example – Producer produces 1 token, and consumer consumes 2 tokens per clock cycle

 Improve performance by running producer at double frequency
 Save area/power by running consumer at half frequency

 Multi-pumping
 Reuse a resource N times within a system clock cycle (Tsys), by running it at Tsys/N
 Especially effective if combined with throughput matching

Adopted methodologies
Cache for HLS
Architecture
 Level 2: set of concurrent processes

 Protocol for cyclic dataflow network
 High throughput: one load/store

per clock cycle when hit
 Level 1: inlined

 Low latency
 Multi-port: single L2, multiple L1

 Unrolling
 Very high throughput: N loads per clock cycle when hit

Implementation
 C++ class with array-like interface and fully-configurable parameters

HLS cache LCS
Performance

speedup 101-102 102-103

Energy saving 101-102 102-103

Resources Buffers + logic Buffers

Integration Parameters
DSE

Algorithm
rewriting

Applicability
Run-time

spatial and
temporal
locality

Design-time
spatial and
temporal
locality

Fig. 6 – Performance of memory optimizations. Fig. 7 – Resource usage for 2D convolution with HLS
cache.

Fig. 2 – Load-compute-store
architecture.

Fig. 3 – Cache internal architecture. Fig. 4 – LCS-like cache
architecture.

Fig. 5 – Hardware setup integrating the HLS cache.

Tab. 1 – Memory optimization approaches.

Fig. 8 – Example of a
dataflow network.

System
Algo

RTL
Logic

Circuit

Behavior
domain

Structure
domain

Physical
domain

System
specification

Fig. 1 – HLS Y-diagram.

	Slide 1

