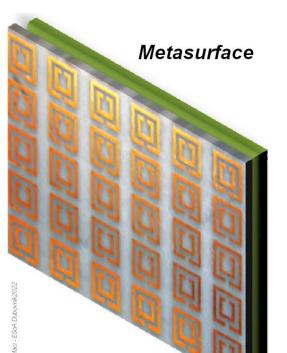


XXXVII Cycle

New paradigms in modelling of impedance and meta-surfaces for radiation and scattering for next generation industrial application **Margaux Bruliard** Supervisor: Prof. Giuseppe Vecchi


Research context and motivation

- Metasurfaces are thin layers of metamaterials element or unit-cell, i.e. thin layers of materials with unusual properties such as:
 - Reflection/refraction of plane waves
 - Dispersion properties of surfaces

that can improve antenna abilities (directivity, radiation pattern, etc) and allow EM "smart

skins"

Metamaterials

Novel contributions

The overall research is poised to address the following innovations

1. A full stable IE-IBC formulation describing a metasurface that will:

- Induce a well-posed and well-conditioned MoM matrix problem
- Incorporate the framework featuring this new formulation in a cooperative framework with other Fellows of the EU H2020 MSCA COMPETE project

2. Effective description of unit cells and host (platform) geometry:

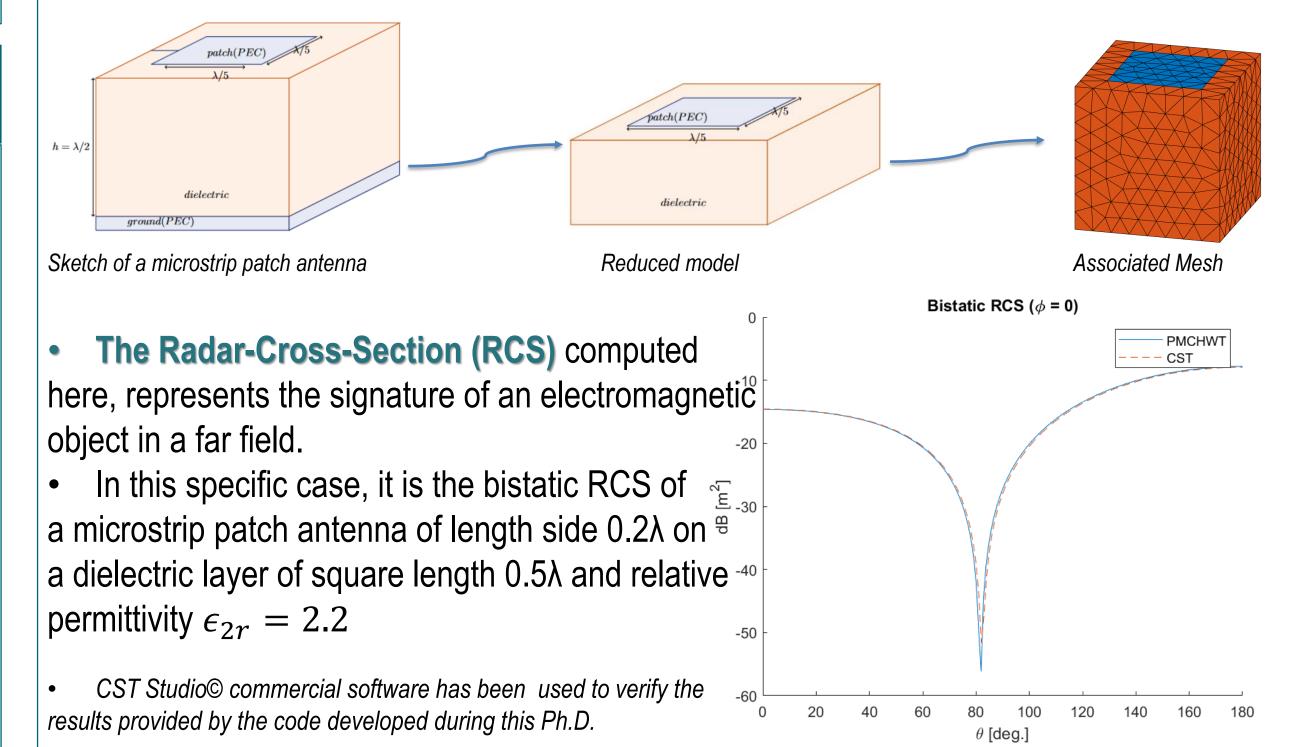
Adopted methodologies

In order to arrive at a new formulation it is necessary to analyze in depth the mathematical properties and practical issues involved in the two involved operators L and K

- To simplify complex antenna models, Impedance Boundary Conditions (IBC) are used to approximate the penetration of the electromagnetic field on a short distance outside the boundary of a medium. For this reason, they are commonly used in inverse problems, i.e. antenna or reflecting surface design based on the radiation or scattering fields desired
- IBCs are applied in multiple configurations models such as thin dielectric sheets, perfect conductors with thin dielectric coatings, etc. For all these reasons, IBCs are very effective tools and a kernel of industrial simulators in computational electromagnetics.

Addressed research questions/problems

We consider the boundary-value problem for Maxwell equations in frequency domain (timeharmonic), and its numerical solution via Surface Integral Equation formulation and discretization via a Boundary-Element method usually called the Method of Moments (MoM) It involves two types of integral operators


$$L(X)(r) = -j \,\omega\mu \,\widehat{n} \times \int_{S} G(r,r') \cdot \left[I + \frac{1}{k^{2}} \nabla \nabla \cdot\right] X(r') dr'$$
$$K(X)(r) = \,\widehat{n} \times \int_{S} \nabla G(r,r') \times X(r') dr'$$

• The IBC are used to described a structure with sub-wavelength patterning at a larger scale, i.e in a homogenized way, in terms of a boundary condition (BC) between E an H (tangent) fields. The standard IBC is of the kind is

• This first part of the research has involved this study and implementation of the two operators witout IBC, which is a necessary part of the overall objective

Integral Equations formulations and MoM matrix build-up

- Building MOM code with Galerkin discretization method for elementary (im)penetrable bodies
- Analysis of a reduced microstrip patch antenna unit-cell:

$$\widehat{n} \times E = \overline{\overline{Z_s}} \cdot \widehat{n} \times (\widehat{n} \times H)$$

Maxwell equations with this additional BC can be conveniently solved via a surface integral equation formulation resulting in the so called **Electric Field Integral Equations** (EFIE) with IBC (EFIE-IBC)

$$L(J_s) + K\left(\overline{Z_s} \cdot (\widehat{n} \times J_s)\right) = -\widehat{n} \times E^{inc}$$

While very effective and employed, this formulation still suffers from stability issues for some types of the surface impedance of importance in recent metasurface applications, and a few other application problems.

Can we define a mathematical Integral Equation – IBC formulation to model all relevant structures effectively and accurately?

Submitted and published works

Acknowledgments

This Ph.D. and the research associated have received funding from the European Union's Horizon 2020 research and Innovation program under the Marie Skłodowska-Curie grant agreement No 955476 and take part in the Computationally Empowered Electromagnetic Industrial Talents (COMPETE) project

Future work

- Far-Field scattering computation of a full array antenna, and analysis of model stability with and without IBC.
- Stable IE-IBC model for multi-uniaxial penetrable layers.
- Formulation of a stable IBC model for curvilinear objects: application to an aircraft radome

List of attended classes

- 01DPJRV Lens antennas: Fundamentals and present applications (7/12/2021, 10 hours)
- 01DOBRV Mathematical-physical theory of electromagnetism (06/06/2022, 15 hours)
- 01SFVRV Metamaterials: Theory and Multiphysics applications (01/04/2022, 20 hours)
- 01UIZRV Microwave Sensing and imaging for innovative applications in health and food industry (22/03/2022, 20 hours)
- European School of Antennas Metasurfaces for Antennas (13/05/2022, 30 hours)
- European School of Antennas Antenna Synthesis (09/09/2022, 30 hours)
- 02LWHRV Communication (31/03/2022, 5 hours)
- 01RISRV Public Speaking (28/02/2022, 5 hours)
- 01SYBRV Research Integrity (21/12/2021, 5 hours)
- 02RHORV The new Internet Society: entering the black-blox of digital innovations (08/06/2022, 6 hours)
- 01UNXRV Thinking out of the box (01/12/2021, 1 hour)
- Nature Masterclasses : Training for researchers & scientists (24/04/2022, 12 hours)

Electrical, Electronics and

Communications Engineering